Certification Problem
Input (TPDB SRS_Standard/Zantema_06/beans1)
The rewrite relation of the following TRS is considered.
1(2(1(x1))) |
→ |
2(0(2(x1))) |
(1) |
0(2(1(x1))) |
→ |
1(0(2(x1))) |
(2) |
L(2(1(x1))) |
→ |
L(1(0(2(x1)))) |
(3) |
1(2(0(x1))) |
→ |
2(0(1(x1))) |
(4) |
1(2(R(x1))) |
→ |
2(0(1(R(x1)))) |
(5) |
0(2(0(x1))) |
→ |
1(0(1(x1))) |
(6) |
L(2(0(x1))) |
→ |
L(1(0(1(x1)))) |
(7) |
0(2(R(x1))) |
→ |
1(0(1(R(x1)))) |
(8) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by AProVE @ termCOMP 2023)
1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
1(2(1(x1))) |
→ |
2(0(2(x1))) |
(1) |
1(2(0(x1))) |
→ |
2(0(1(x1))) |
(4) |
1(2(L(x1))) |
→ |
2(0(1(L(x1)))) |
(9) |
0(2(1(x1))) |
→ |
1(0(2(x1))) |
(2) |
R(2(1(x1))) |
→ |
R(1(0(2(x1)))) |
(10) |
0(2(0(x1))) |
→ |
1(0(1(x1))) |
(6) |
0(2(L(x1))) |
→ |
1(0(1(L(x1)))) |
(11) |
R(2(0(x1))) |
→ |
R(1(0(1(x1)))) |
(12) |
1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
1#(2(1(x1))) |
→ |
0#(2(x1)) |
(13) |
1#(2(0(x1))) |
→ |
0#(1(x1)) |
(14) |
1#(2(0(x1))) |
→ |
1#(x1) |
(15) |
1#(2(L(x1))) |
→ |
0#(1(L(x1))) |
(16) |
1#(2(L(x1))) |
→ |
1#(L(x1)) |
(17) |
0#(2(1(x1))) |
→ |
1#(0(2(x1))) |
(18) |
0#(2(1(x1))) |
→ |
0#(2(x1)) |
(19) |
R#(2(1(x1))) |
→ |
R#(1(0(2(x1)))) |
(20) |
R#(2(1(x1))) |
→ |
1#(0(2(x1))) |
(21) |
R#(2(1(x1))) |
→ |
0#(2(x1)) |
(22) |
0#(2(0(x1))) |
→ |
1#(0(1(x1))) |
(23) |
0#(2(0(x1))) |
→ |
0#(1(x1)) |
(24) |
0#(2(0(x1))) |
→ |
1#(x1) |
(25) |
0#(2(L(x1))) |
→ |
1#(0(1(L(x1)))) |
(26) |
0#(2(L(x1))) |
→ |
0#(1(L(x1))) |
(27) |
0#(2(L(x1))) |
→ |
1#(L(x1)) |
(28) |
R#(2(0(x1))) |
→ |
R#(1(0(1(x1)))) |
(29) |
R#(2(0(x1))) |
→ |
1#(0(1(x1))) |
(30) |
R#(2(0(x1))) |
→ |
0#(1(x1)) |
(31) |
R#(2(0(x1))) |
→ |
1#(x1) |
(32) |
1.1.1 Dependency Graph Processor
The dependency pairs are split into 2
components.