The rewrite relation of the following TRS is considered.
| 0(1(2(x1))) | → | 0(0(2(1(x1)))) | (1) |
| 0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
| 0(1(2(x1))) | → | 0(2(3(1(x1)))) | (3) |
| 0(1(4(x1))) | → | 0(4(1(1(0(0(x1)))))) | (4) |
| 0(3(2(x1))) | → | 0(0(2(3(x1)))) | (5) |
| 0(3(2(x1))) | → | 0(2(3(1(x1)))) | (6) |
| 0(3(4(x1))) | → | 0(0(4(3(x1)))) | (7) |
| 0(4(5(x1))) | → | 0(0(4(1(5(x1))))) | (8) |
| 2(0(1(x1))) | → | 0(2(1(1(x1)))) | (9) |
| 2(4(1(x1))) | → | 0(4(2(3(1(x1))))) | (10) |
| 4(3(2(x1))) | → | 4(2(3(1(x1)))) | (11) |
| 0(1(0(1(x1)))) | → | 0(0(3(1(1(x1))))) | (12) |
| 0(1(0(2(x1)))) | → | 0(0(2(1(1(1(x1)))))) | (13) |
| 0(1(4(2(x1)))) | → | 0(4(2(1(1(x1))))) | (14) |
| 0(3(2(4(x1)))) | → | 0(4(2(3(0(x1))))) | (15) |
| 0(3(4(2(x1)))) | → | 0(4(2(3(1(x1))))) | (16) |
| 0(3(5(2(x1)))) | → | 0(2(1(3(5(x1))))) | (17) |
| 0(4(5(3(x1)))) | → | 0(0(4(3(5(x1))))) | (18) |
| 0(5(3(4(x1)))) | → | 0(4(3(3(5(x1))))) | (19) |
| 0(5(4(2(x1)))) | → | 0(4(2(1(5(x1))))) | (20) |
| 2(0(3(1(x1)))) | → | 0(3(2(1(1(x1))))) | (21) |
| 2(2(4(1(x1)))) | → | 4(2(2(3(1(x1))))) | (22) |
| 2(3(4(3(x1)))) | → | 2(3(0(4(3(3(x1)))))) | (23) |
| 2(4(1(1(x1)))) | → | 2(0(4(1(1(x1))))) | (24) |
| 2(4(1(3(x1)))) | → | 0(4(3(2(1(x1))))) | (25) |
| 2(4(3(2(x1)))) | → | 2(0(4(2(3(x1))))) | (26) |
| 2(5(4(3(x1)))) | → | 0(4(2(3(5(x1))))) | (27) |
| 4(2(0(3(x1)))) | → | 2(3(0(4(3(x1))))) | (28) |
| 4(3(4(3(x1)))) | → | 4(3(0(4(3(x1))))) | (29) |
| 0(1(5(3(2(x1))))) | → | 0(5(0(3(2(1(x1)))))) | (30) |
| 0(1(5(4(2(x1))))) | → | 5(2(1(0(4(3(x1)))))) | (31) |
| 0(1(5(4(5(x1))))) | → | 0(4(1(2(5(5(x1)))))) | (32) |
| 0(2(2(4(3(x1))))) | → | 2(0(4(3(0(2(x1)))))) | (33) |
| 0(3(0(4(5(x1))))) | → | 5(0(0(4(3(2(x1)))))) | (34) |
| 0(3(2(4(3(x1))))) | → | 0(4(3(3(4(2(x1)))))) | (35) |
| 0(4(2(5(4(x1))))) | → | 0(4(2(1(5(4(x1)))))) | (36) |
| 0(5(3(2(1(x1))))) | → | 0(2(3(1(3(5(x1)))))) | (37) |
| 0(5(4(1(4(x1))))) | → | 4(0(4(1(5(0(x1)))))) | (38) |
| 2(4(1(5(3(x1))))) | → | 0(4(1(3(5(2(x1)))))) | (39) |
| 2(4(2(0(1(x1))))) | → | 2(1(1(2(0(4(x1)))))) | (40) |
| 2(5(3(4(1(x1))))) | → | 5(1(0(4(3(2(x1)))))) | (41) |
| 4(0(1(5(4(x1))))) | → | 4(0(0(4(1(5(x1)))))) | (42) |
| 4(3(0(2(3(x1))))) | → | 0(4(2(3(1(3(x1)))))) | (43) |
| 4(4(1(2(3(x1))))) | → | 0(4(4(2(3(1(x1)))))) | (44) |
| 4(5(1(0(2(x1))))) | → | 1(0(4(2(1(5(x1)))))) | (45) |
There are 134 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
| 2#(5(3(4(1(x1))))) | → | 2#(x1) | (179) |
| 0#(1(5(4(2(x1))))) | → | 4#(3(x1)) | (178) |
| 0#(1(4(x1))) | → | 0#(0(x1)) | (122) |
| 2#(4(3(2(x1)))) | → | 2#(0(4(2(3(x1))))) | (176) |
| 0#(1(5(4(2(x1))))) | → | 0#(4(3(x1))) | (120) |
| 2#(4(2(0(1(x1))))) | → | 4#(x1) | (118) |
| 2#(4(3(2(x1)))) | → | 4#(2(3(x1))) | (116) |
| 2#(0(3(1(x1)))) | → | 0#(3(2(1(1(x1))))) | (114) |
| 0#(1(5(3(2(x1))))) | → | 0#(5(0(3(2(1(x1)))))) | (169) |
| 0#(3(2(x1))) | → | 0#(2(3(x1))) | (102) |
| 0#(3(2(4(x1)))) | → | 0#(4(2(3(0(x1))))) | (168) |
| 0#(3(2(x1))) | → | 0#(0(2(3(x1)))) | (166) |
| 0#(5(4(1(4(x1))))) | → | 0#(x1) | (95) |
| 2#(5(3(4(1(x1))))) | → | 0#(4(3(2(x1)))) | (164) |
| 0#(2(2(4(3(x1))))) | → | 2#(x1) | (92) |
| 0#(1(4(x1))) | → | 0#(x1) | (161) |
| 2#(4(1(3(x1)))) | → | 0#(4(3(2(1(x1))))) | (91) |
| 2#(4(1(5(3(x1))))) | → | 2#(x1) | (160) |
| 4#(2(0(3(x1)))) | → | 0#(4(3(x1))) | (158) |
| 2#(4(3(2(x1)))) | → | 0#(4(2(3(x1)))) | (155) |
| 0#(3(2(4(3(x1))))) | → | 2#(x1) | (89) |
| 0#(3(4(x1))) | → | 0#(0(4(3(x1)))) | (154) |
| 0#(3(2(4(x1)))) | → | 4#(2(3(0(x1)))) | (153) |
| 0#(3(0(4(5(x1))))) | → | 0#(0(4(3(2(x1))))) | (84) |
| 2#(5(3(4(1(x1))))) | → | 4#(3(2(x1))) | (150) |
| 0#(1(5(3(2(x1))))) | → | 0#(3(2(1(x1)))) | (81) |
| 4#(3(4(3(x1)))) | → | 4#(3(0(4(3(x1))))) | (77) |
| 0#(2(2(4(3(x1))))) | → | 4#(3(0(2(x1)))) | (71) |
| 0#(2(2(4(3(x1))))) | → | 0#(2(x1)) | (69) |
| 0#(3(2(4(x1)))) | → | 0#(x1) | (143) |
| 2#(4(2(0(1(x1))))) | → | 2#(0(4(x1))) | (141) |
| 0#(3(4(x1))) | → | 4#(3(x1)) | (140) |
| 0#(2(2(4(3(x1))))) | → | 0#(4(3(0(2(x1))))) | (63) |
| 0#(3(0(4(5(x1))))) | → | 0#(4(3(2(x1)))) | (62) |
| 0#(2(2(4(3(x1))))) | → | 2#(0(4(3(0(2(x1)))))) | (136) |
| 0#(3(4(x1))) | → | 0#(4(3(x1))) | (134) |
| 0#(3(0(4(5(x1))))) | → | 2#(x1) | (133) |
| 0#(3(0(4(5(x1))))) | → | 4#(3(2(x1))) | (131) |
| 0#(3(2(4(3(x1))))) | → | 4#(2(x1)) | (130) |
| 4#(3(4(3(x1)))) | → | 0#(4(3(x1))) | (128) |
| 2#(4(2(0(1(x1))))) | → | 0#(4(x1)) | (49) |
| 4#(2(0(3(x1)))) | → | 4#(3(x1)) | (47) |
| [0#(x1)] | = | x1 + 0 |
| [1(x1)] | = | x1 + 0 |
| [4(x1)] | = | x1 + 0 |
| [5(x1)] | = | x1 + 1 |
| [3(x1)] | = | x1 + 0 |
| [2#(x1)] | = | x1 + 0 |
| [4#(x1)] | = | x1 + 0 |
| [0(x1)] | = | x1 + 0 |
| [2(x1)] | = | x1 + 0 |
| 0(4(5(3(x1)))) | → | 0(0(4(3(5(x1))))) | (18) |
| 0(1(4(x1))) | → | 0(4(1(1(0(0(x1)))))) | (4) |
| 0(3(2(4(x1)))) | → | 0(4(2(3(0(x1))))) | (15) |
| 0(4(5(x1))) | → | 0(0(4(1(5(x1))))) | (8) |
| 0(1(2(x1))) | → | 0(0(2(1(x1)))) | (1) |
| 0(1(2(x1))) | → | 0(2(3(1(x1)))) | (3) |
| 0(3(4(2(x1)))) | → | 0(4(2(3(1(x1))))) | (16) |
| 2(0(3(1(x1)))) | → | 0(3(2(1(1(x1))))) | (21) |
| 0(4(2(5(4(x1))))) | → | 0(4(2(1(5(4(x1)))))) | (36) |
| 2(4(3(2(x1)))) | → | 2(0(4(2(3(x1))))) | (26) |
| 0(5(3(4(x1)))) | → | 0(4(3(3(5(x1))))) | (19) |
| 0(1(5(4(5(x1))))) | → | 0(4(1(2(5(5(x1)))))) | (32) |
| 0(3(5(2(x1)))) | → | 0(2(1(3(5(x1))))) | (17) |
| 2(5(4(3(x1)))) | → | 0(4(2(3(5(x1))))) | (27) |
| 0(3(0(4(5(x1))))) | → | 5(0(0(4(3(2(x1)))))) | (34) |
| 2(2(4(1(x1)))) | → | 4(2(2(3(1(x1))))) | (22) |
| 4(2(0(3(x1)))) | → | 2(3(0(4(3(x1))))) | (28) |
| 4(4(1(2(3(x1))))) | → | 0(4(4(2(3(1(x1)))))) | (44) |
| 0(3(2(x1))) | → | 0(0(2(3(x1)))) | (5) |
| 0(2(2(4(3(x1))))) | → | 2(0(4(3(0(2(x1)))))) | (33) |
| 2(4(1(x1))) | → | 0(4(2(3(1(x1))))) | (10) |
| 2(4(1(5(3(x1))))) | → | 0(4(1(3(5(2(x1)))))) | (39) |
| 0(3(4(x1))) | → | 0(0(4(3(x1)))) | (7) |
| 0(5(4(2(x1)))) | → | 0(4(2(1(5(x1))))) | (20) |
| 2(4(1(3(x1)))) | → | 0(4(3(2(1(x1))))) | (25) |
| 0(1(5(3(2(x1))))) | → | 0(5(0(3(2(1(x1)))))) | (30) |
| 0(1(4(2(x1)))) | → | 0(4(2(1(1(x1))))) | (14) |
| 0(1(5(4(2(x1))))) | → | 5(2(1(0(4(3(x1)))))) | (31) |
| 0(1(0(1(x1)))) | → | 0(0(3(1(1(x1))))) | (12) |
| 4(5(1(0(2(x1))))) | → | 1(0(4(2(1(5(x1)))))) | (45) |
| 2(3(4(3(x1)))) | → | 2(3(0(4(3(3(x1)))))) | (23) |
| 2(4(1(1(x1)))) | → | 2(0(4(1(1(x1))))) | (24) |
| 4(3(2(x1))) | → | 4(2(3(1(x1)))) | (11) |
| 2(0(1(x1))) | → | 0(2(1(1(x1)))) | (9) |
| 0(1(0(2(x1)))) | → | 0(0(2(1(1(1(x1)))))) | (13) |
| 2(4(2(0(1(x1))))) | → | 2(1(1(2(0(4(x1)))))) | (40) |
| 0(3(2(x1))) | → | 0(2(3(1(x1)))) | (6) |
| 0(5(4(1(4(x1))))) | → | 4(0(4(1(5(0(x1)))))) | (38) |
| 0(5(3(2(1(x1))))) | → | 0(2(3(1(3(5(x1)))))) | (37) |
| 2(5(3(4(1(x1))))) | → | 5(1(0(4(3(2(x1)))))) | (41) |
| 4(0(1(5(4(x1))))) | → | 4(0(0(4(1(5(x1)))))) | (42) |
| 0(3(2(4(3(x1))))) | → | 0(4(3(3(4(2(x1)))))) | (35) |
| 4(3(4(3(x1)))) | → | 4(3(0(4(3(x1))))) | (29) |
| 4(3(0(2(3(x1))))) | → | 0(4(2(3(1(3(x1)))))) | (43) |
| 0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
| 2#(5(3(4(1(x1))))) | → | 2#(x1) | (179) |
| 0#(1(5(4(2(x1))))) | → | 4#(3(x1)) | (178) |
| 0#(1(5(4(2(x1))))) | → | 0#(4(3(x1))) | (120) |
| 0#(5(4(1(4(x1))))) | → | 0#(x1) | (95) |
| 2#(5(3(4(1(x1))))) | → | 0#(4(3(2(x1)))) | (164) |
| 2#(4(1(5(3(x1))))) | → | 2#(x1) | (160) |
| 0#(3(0(4(5(x1))))) | → | 0#(0(4(3(2(x1))))) | (84) |
| 2#(5(3(4(1(x1))))) | → | 4#(3(2(x1))) | (150) |
| 0#(1(5(3(2(x1))))) | → | 0#(3(2(1(x1)))) | (81) |
| 0#(3(0(4(5(x1))))) | → | 0#(4(3(2(x1)))) | (62) |
| 0#(3(0(4(5(x1))))) | → | 2#(x1) | (133) |
| 0#(3(0(4(5(x1))))) | → | 4#(3(2(x1))) | (131) |
The dependency pairs are split into 1 component.
| 0#(1(4(x1))) | → | 0#(x1) | (161) |
| 0#(1(4(x1))) | → | 0#(0(x1)) | (122) |
| 0#(3(2(4(x1)))) | → | 0#(x1) | (143) |
| 0#(3(2(4(x1)))) | → | 4#(2(3(0(x1)))) | (153) |
| 0#(3(2(4(x1)))) | → | 0#(4(2(3(0(x1))))) | (168) |
| 2#(0(3(1(x1)))) | → | 0#(3(2(1(1(x1))))) | (114) |
| 2#(4(3(2(x1)))) | → | 4#(2(3(x1))) | (116) |
| 2#(4(3(2(x1)))) | → | 0#(4(2(3(x1)))) | (155) |
| 2#(4(3(2(x1)))) | → | 2#(0(4(2(3(x1))))) | (176) |
| 4#(2(0(3(x1)))) | → | 4#(3(x1)) | (47) |
| 4#(2(0(3(x1)))) | → | 0#(4(3(x1))) | (158) |
| 0#(3(2(x1))) | → | 0#(2(3(x1))) | (102) |
| 0#(3(2(x1))) | → | 0#(0(2(3(x1)))) | (166) |
| 0#(2(2(4(3(x1))))) | → | 2#(x1) | (92) |
| 0#(2(2(4(3(x1))))) | → | 0#(2(x1)) | (69) |
| 0#(2(2(4(3(x1))))) | → | 4#(3(0(2(x1)))) | (71) |
| 0#(2(2(4(3(x1))))) | → | 0#(4(3(0(2(x1))))) | (63) |
| 0#(2(2(4(3(x1))))) | → | 2#(0(4(3(0(2(x1)))))) | (136) |
| 0#(3(4(x1))) | → | 4#(3(x1)) | (140) |
| 0#(3(4(x1))) | → | 0#(4(3(x1))) | (134) |
| 0#(3(4(x1))) | → | 0#(0(4(3(x1)))) | (154) |
| 2#(4(1(3(x1)))) | → | 0#(4(3(2(1(x1))))) | (91) |
| 2#(4(2(0(1(x1))))) | → | 4#(x1) | (118) |
| 2#(4(2(0(1(x1))))) | → | 0#(4(x1)) | (49) |
| 2#(4(2(0(1(x1))))) | → | 2#(0(4(x1))) | (141) |
| 0#(3(2(4(3(x1))))) | → | 2#(x1) | (89) |
| 0#(3(2(4(3(x1))))) | → | 4#(2(x1)) | (130) |
| 4#(3(4(3(x1)))) | → | 0#(4(3(x1))) | (128) |
| 4#(3(4(3(x1)))) | → | 4#(3(0(4(3(x1))))) | (77) |
| [0#(x1)] | = |
|
||||||||||||
| [1(x1)] | = |
|
||||||||||||
| [4(x1)] | = |
|
||||||||||||
| [5(x1)] | = |
|
||||||||||||
| [3(x1)] | = |
|
||||||||||||
| [2#(x1)] | = |
|
||||||||||||
| [4#(x1)] | = |
|
||||||||||||
| [0(x1)] | = |
|
||||||||||||
| [2(x1)] | = |
|
| 0(4(5(3(x1)))) | → | 0(0(4(3(5(x1))))) | (18) |
| 0(1(4(x1))) | → | 0(4(1(1(0(0(x1)))))) | (4) |
| 0(3(2(4(x1)))) | → | 0(4(2(3(0(x1))))) | (15) |
| 0(4(5(x1))) | → | 0(0(4(1(5(x1))))) | (8) |
| 0(1(2(x1))) | → | 0(0(2(1(x1)))) | (1) |
| 0(1(2(x1))) | → | 0(2(3(1(x1)))) | (3) |
| 0(3(4(2(x1)))) | → | 0(4(2(3(1(x1))))) | (16) |
| 2(0(3(1(x1)))) | → | 0(3(2(1(1(x1))))) | (21) |
| 0(4(2(5(4(x1))))) | → | 0(4(2(1(5(4(x1)))))) | (36) |
| 2(4(3(2(x1)))) | → | 2(0(4(2(3(x1))))) | (26) |
| 0(5(3(4(x1)))) | → | 0(4(3(3(5(x1))))) | (19) |
| 0(1(5(4(5(x1))))) | → | 0(4(1(2(5(5(x1)))))) | (32) |
| 0(3(5(2(x1)))) | → | 0(2(1(3(5(x1))))) | (17) |
| 2(5(4(3(x1)))) | → | 0(4(2(3(5(x1))))) | (27) |
| 0(3(0(4(5(x1))))) | → | 5(0(0(4(3(2(x1)))))) | (34) |
| 2(2(4(1(x1)))) | → | 4(2(2(3(1(x1))))) | (22) |
| 4(2(0(3(x1)))) | → | 2(3(0(4(3(x1))))) | (28) |
| 4(4(1(2(3(x1))))) | → | 0(4(4(2(3(1(x1)))))) | (44) |
| 0(3(2(x1))) | → | 0(0(2(3(x1)))) | (5) |
| 0(2(2(4(3(x1))))) | → | 2(0(4(3(0(2(x1)))))) | (33) |
| 2(4(1(x1))) | → | 0(4(2(3(1(x1))))) | (10) |
| 2(4(1(5(3(x1))))) | → | 0(4(1(3(5(2(x1)))))) | (39) |
| 0(3(4(x1))) | → | 0(0(4(3(x1)))) | (7) |
| 0(5(4(2(x1)))) | → | 0(4(2(1(5(x1))))) | (20) |
| 2(4(1(3(x1)))) | → | 0(4(3(2(1(x1))))) | (25) |
| 0(1(5(3(2(x1))))) | → | 0(5(0(3(2(1(x1)))))) | (30) |
| 0(1(4(2(x1)))) | → | 0(4(2(1(1(x1))))) | (14) |
| 0(1(5(4(2(x1))))) | → | 5(2(1(0(4(3(x1)))))) | (31) |
| 0(1(0(1(x1)))) | → | 0(0(3(1(1(x1))))) | (12) |
| 4(5(1(0(2(x1))))) | → | 1(0(4(2(1(5(x1)))))) | (45) |
| 2(3(4(3(x1)))) | → | 2(3(0(4(3(3(x1)))))) | (23) |
| 2(4(1(1(x1)))) | → | 2(0(4(1(1(x1))))) | (24) |
| 4(3(2(x1))) | → | 4(2(3(1(x1)))) | (11) |
| 2(0(1(x1))) | → | 0(2(1(1(x1)))) | (9) |
| 0(1(0(2(x1)))) | → | 0(0(2(1(1(1(x1)))))) | (13) |
| 2(4(2(0(1(x1))))) | → | 2(1(1(2(0(4(x1)))))) | (40) |
| 0(3(2(x1))) | → | 0(2(3(1(x1)))) | (6) |
| 0(5(4(1(4(x1))))) | → | 4(0(4(1(5(0(x1)))))) | (38) |
| 0(5(3(2(1(x1))))) | → | 0(2(3(1(3(5(x1)))))) | (37) |
| 2(5(3(4(1(x1))))) | → | 5(1(0(4(3(2(x1)))))) | (41) |
| 4(0(1(5(4(x1))))) | → | 4(0(0(4(1(5(x1)))))) | (42) |
| 0(3(2(4(3(x1))))) | → | 0(4(3(3(4(2(x1)))))) | (35) |
| 4(3(4(3(x1)))) | → | 4(3(0(4(3(x1))))) | (29) |
| 4(3(0(2(3(x1))))) | → | 0(4(2(3(1(3(x1)))))) | (43) |
| 0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
| 0#(1(4(x1))) | → | 0#(x1) | (161) |
| 0#(1(4(x1))) | → | 0#(0(x1)) | (122) |
| 0#(3(2(4(x1)))) | → | 0#(x1) | (143) |
| 0#(3(2(4(x1)))) | → | 4#(2(3(0(x1)))) | (153) |
| 0#(3(2(4(x1)))) | → | 0#(4(2(3(0(x1))))) | (168) |
| 2#(0(3(1(x1)))) | → | 0#(3(2(1(1(x1))))) | (114) |
| 2#(4(3(2(x1)))) | → | 4#(2(3(x1))) | (116) |
| 2#(4(3(2(x1)))) | → | 0#(4(2(3(x1)))) | (155) |
| 2#(4(3(2(x1)))) | → | 2#(0(4(2(3(x1))))) | (176) |
| 4#(2(0(3(x1)))) | → | 4#(3(x1)) | (47) |
| 4#(2(0(3(x1)))) | → | 0#(4(3(x1))) | (158) |
| 0#(2(2(4(3(x1))))) | → | 2#(x1) | (92) |
| 0#(2(2(4(3(x1))))) | → | 0#(2(x1)) | (69) |
| 0#(2(2(4(3(x1))))) | → | 4#(3(0(2(x1)))) | (71) |
| 0#(2(2(4(3(x1))))) | → | 0#(4(3(0(2(x1))))) | (63) |
| 0#(3(4(x1))) | → | 4#(3(x1)) | (140) |
| 0#(3(4(x1))) | → | 0#(4(3(x1))) | (134) |
| 0#(3(4(x1))) | → | 0#(0(4(3(x1)))) | (154) |
| 2#(4(1(3(x1)))) | → | 0#(4(3(2(1(x1))))) | (91) |
| 2#(4(2(0(1(x1))))) | → | 4#(x1) | (118) |
| 2#(4(2(0(1(x1))))) | → | 0#(4(x1)) | (49) |
| 2#(4(2(0(1(x1))))) | → | 2#(0(4(x1))) | (141) |
| 0#(3(2(4(3(x1))))) | → | 2#(x1) | (89) |
| 0#(3(2(4(3(x1))))) | → | 4#(2(x1)) | (130) |
| 4#(3(4(3(x1)))) | → | 0#(4(3(x1))) | (128) |
| 4#(3(4(3(x1)))) | → | 4#(3(0(4(3(x1))))) | (77) |
The dependency pairs are split into 1 component.
| 0#(3(2(x1))) | → | 0#(2(3(x1))) | (102) |
| 0#(3(2(x1))) | → | 0#(0(2(3(x1)))) | (166) |
| [0#(x1)] | = | x1 + 0 |
| [1(x1)] | = | 1 |
| [4(x1)] | = | 1 |
| [5(x1)] | = | 1 |
| [3(x1)] | = | x1 + 436 |
| [2#(x1)] | = | 0 |
| [4#(x1)] | = | 0 |
| [0(x1)] | = | 1 |
| [2(x1)] | = | 1 |
| 0(4(5(3(x1)))) | → | 0(0(4(3(5(x1))))) | (18) |
| 0(1(4(x1))) | → | 0(4(1(1(0(0(x1)))))) | (4) |
| 0(3(2(4(x1)))) | → | 0(4(2(3(0(x1))))) | (15) |
| 0(4(5(x1))) | → | 0(0(4(1(5(x1))))) | (8) |
| 0(1(2(x1))) | → | 0(0(2(1(x1)))) | (1) |
| 0(1(2(x1))) | → | 0(2(3(1(x1)))) | (3) |
| 0(3(4(2(x1)))) | → | 0(4(2(3(1(x1))))) | (16) |
| 2(0(3(1(x1)))) | → | 0(3(2(1(1(x1))))) | (21) |
| 0(4(2(5(4(x1))))) | → | 0(4(2(1(5(4(x1)))))) | (36) |
| 2(4(3(2(x1)))) | → | 2(0(4(2(3(x1))))) | (26) |
| 0(5(3(4(x1)))) | → | 0(4(3(3(5(x1))))) | (19) |
| 0(1(5(4(5(x1))))) | → | 0(4(1(2(5(5(x1)))))) | (32) |
| 0(3(5(2(x1)))) | → | 0(2(1(3(5(x1))))) | (17) |
| 2(5(4(3(x1)))) | → | 0(4(2(3(5(x1))))) | (27) |
| 0(3(0(4(5(x1))))) | → | 5(0(0(4(3(2(x1)))))) | (34) |
| 2(2(4(1(x1)))) | → | 4(2(2(3(1(x1))))) | (22) |
| 4(2(0(3(x1)))) | → | 2(3(0(4(3(x1))))) | (28) |
| 4(4(1(2(3(x1))))) | → | 0(4(4(2(3(1(x1)))))) | (44) |
| 0(3(2(x1))) | → | 0(0(2(3(x1)))) | (5) |
| 0(2(2(4(3(x1))))) | → | 2(0(4(3(0(2(x1)))))) | (33) |
| 2(4(1(x1))) | → | 0(4(2(3(1(x1))))) | (10) |
| 2(4(1(5(3(x1))))) | → | 0(4(1(3(5(2(x1)))))) | (39) |
| 0(3(4(x1))) | → | 0(0(4(3(x1)))) | (7) |
| 0(5(4(2(x1)))) | → | 0(4(2(1(5(x1))))) | (20) |
| 2(4(1(3(x1)))) | → | 0(4(3(2(1(x1))))) | (25) |
| 0(1(5(3(2(x1))))) | → | 0(5(0(3(2(1(x1)))))) | (30) |
| 0(1(4(2(x1)))) | → | 0(4(2(1(1(x1))))) | (14) |
| 0(1(5(4(2(x1))))) | → | 5(2(1(0(4(3(x1)))))) | (31) |
| 0(1(0(1(x1)))) | → | 0(0(3(1(1(x1))))) | (12) |
| 4(5(1(0(2(x1))))) | → | 1(0(4(2(1(5(x1)))))) | (45) |
| 2(3(4(3(x1)))) | → | 2(3(0(4(3(3(x1)))))) | (23) |
| 2(4(1(1(x1)))) | → | 2(0(4(1(1(x1))))) | (24) |
| 4(3(2(x1))) | → | 4(2(3(1(x1)))) | (11) |
| 2(0(1(x1))) | → | 0(2(1(1(x1)))) | (9) |
| 0(1(0(2(x1)))) | → | 0(0(2(1(1(1(x1)))))) | (13) |
| 2(4(2(0(1(x1))))) | → | 2(1(1(2(0(4(x1)))))) | (40) |
| 0(3(2(x1))) | → | 0(2(3(1(x1)))) | (6) |
| 0(5(4(1(4(x1))))) | → | 4(0(4(1(5(0(x1)))))) | (38) |
| 0(5(3(2(1(x1))))) | → | 0(2(3(1(3(5(x1)))))) | (37) |
| 2(5(3(4(1(x1))))) | → | 5(1(0(4(3(2(x1)))))) | (41) |
| 4(0(1(5(4(x1))))) | → | 4(0(0(4(1(5(x1)))))) | (42) |
| 0(3(2(4(3(x1))))) | → | 0(4(3(3(4(2(x1)))))) | (35) |
| 4(3(4(3(x1)))) | → | 4(3(0(4(3(x1))))) | (29) |
| 4(3(0(2(3(x1))))) | → | 0(4(2(3(1(3(x1)))))) | (43) |
| 0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
| 0#(3(2(x1))) | → | 0#(2(3(x1))) | (102) |
| 0#(3(2(x1))) | → | 0#(0(2(3(x1)))) | (166) |
The dependency pairs are split into 0 components.