The rewrite relation of the following TRS is considered.
0(0(x1)) | → | 0(1(0(2(x1)))) | (1) |
0(0(x1)) | → | 1(0(2(0(x1)))) | (2) |
0(0(x1)) | → | 1(0(1(0(1(x1))))) | (3) |
0(0(x1)) | → | 1(0(1(2(0(x1))))) | (4) |
0(0(x1)) | → | 1(0(2(0(3(x1))))) | (5) |
0(0(x1)) | → | 1(0(2(2(0(x1))))) | (6) |
0(0(x1)) | → | 2(1(0(2(0(x1))))) | (7) |
0(0(x1)) | → | 0(1(0(2(1(2(x1)))))) | (8) |
0(0(x1)) | → | 1(0(1(0(2(2(x1)))))) | (9) |
0(0(x1)) | → | 1(0(1(3(0(1(x1)))))) | (10) |
0(0(x1)) | → | 1(0(4(1(0(2(x1)))))) | (11) |
0(0(x1)) | → | 1(1(1(0(2(0(x1)))))) | (12) |
0(0(x1)) | → | 3(0(4(0(2(2(x1)))))) | (13) |
0(0(x1)) | → | 3(1(0(1(0(4(x1)))))) | (14) |
0(0(0(x1))) | → | 0(1(0(4(0(4(x1)))))) | (15) |
0(0(0(x1))) | → | 3(0(0(1(0(2(x1)))))) | (16) |
3(0(0(x1))) | → | 3(0(2(0(3(x1))))) | (17) |
3(0(0(x1))) | → | 3(0(2(4(0(2(x1)))))) | (18) |
5(2(0(x1))) | → | 0(2(3(5(x1)))) | (19) |
5(2(0(x1))) | → | 3(5(0(2(x1)))) | (20) |
5(2(0(x1))) | → | 0(2(3(3(5(x1))))) | (21) |
5(2(0(x1))) | → | 1(0(2(3(5(x1))))) | (22) |
5(2(0(x1))) | → | 5(1(0(2(4(x1))))) | (23) |
5(2(0(x1))) | → | 5(0(1(2(2(2(x1)))))) | (24) |
5(2(0(x1))) | → | 5(3(5(1(0(2(x1)))))) | (25) |
0(5(2(0(x1)))) | → | 0(5(0(2(2(x1))))) | (26) |
3(4(0(0(x1)))) | → | 0(3(3(0(4(5(x1)))))) | (27) |
3(4(0(0(x1)))) | → | 3(0(4(5(3(0(x1)))))) | (28) |
5(1(0(0(x1)))) | → | 0(3(1(0(1(5(x1)))))) | (29) |
5(1(4(0(x1)))) | → | 0(1(5(2(4(x1))))) | (30) |
5(1(5(0(x1)))) | → | 5(1(0(3(5(x1))))) | (31) |
5(2(2(0(x1)))) | → | 0(2(1(2(4(5(x1)))))) | (32) |
5(3(2(0(x1)))) | → | 5(3(0(1(2(x1))))) | (33) |
5(3(2(0(x1)))) | → | 3(3(5(3(0(2(x1)))))) | (34) |
5(4(0(0(x1)))) | → | 0(4(5(5(0(2(x1)))))) | (35) |
5(4(2(0(x1)))) | → | 2(4(3(5(0(x1))))) | (36) |
5(4(2(0(x1)))) | → | 5(0(2(2(4(x1))))) | (37) |
5(4(2(0(x1)))) | → | 5(4(5(0(2(x1))))) | (38) |
0(3(5(2(0(x1))))) | → | 3(0(2(5(3(0(x1)))))) | (39) |
3(3(5(2(0(x1))))) | → | 3(5(2(3(0(2(x1)))))) | (40) |
3(3(5(2(0(x1))))) | → | 4(3(3(5(0(2(x1)))))) | (41) |
5(0(5(2(0(x1))))) | → | 0(3(5(5(0(2(x1)))))) | (42) |
5(1(4(0(0(x1))))) | → | 0(2(5(0(1(4(x1)))))) | (43) |
5(3(3(2(0(x1))))) | → | 5(2(3(3(0(2(x1)))))) | (44) |
5(4(3(0(0(x1))))) | → | 1(0(4(0(3(5(x1)))))) | (45) |
There are 133 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
5#(1(5(0(x1)))) | → | 3#(5(x1)) | (165) |
5#(2(2(0(x1)))) | → | 5#(x1) | (163) |
5#(1(5(0(x1)))) | → | 0#(3(5(x1))) | (117) |
5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
3#(0(0(x1))) | → | 3#(x1) | (160) |
5#(4(2(0(x1)))) | → | 3#(5(0(x1))) | (112) |
3#(0(0(x1))) | → | 0#(3(x1)) | (104) |
5#(1(0(0(x1)))) | → | 5#(x1) | (157) |
5#(4(3(0(0(x1))))) | → | 3#(5(x1)) | (101) |
0#(0(0(x1))) | → | 0#(0(1(0(2(x1))))) | (99) |
0#(0(x1)) | → | 3#(x1) | (155) |
0#(0(x1)) | → | 0#(3(x1)) | (91) |
0#(3(5(2(0(x1))))) | → | 3#(0(x1)) | (151) |
3#(4(0(0(x1)))) | → | 3#(0(x1)) | (150) |
3#(4(0(0(x1)))) | → | 5#(x1) | (89) |
5#(2(0(x1))) | → | 5#(x1) | (76) |
5#(1(5(0(x1)))) | → | 5#(x1) | (85) |
0#(3(5(2(0(x1))))) | → | 5#(3(0(x1))) | (82) |
0#(0(0(x1))) | → | 3#(0(0(1(0(2(x1)))))) | (143) |
5#(2(0(x1))) | → | 5#(x1) | (76) |
5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
3#(4(0(0(x1)))) | → | 5#(3(0(x1))) | (140) |
5#(4(2(0(x1)))) | → | 5#(0(x1)) | (70) |
5#(1(5(0(x1)))) | → | 5#(1(0(3(5(x1))))) | (67) |
5#(4(3(0(0(x1))))) | → | 0#(3(5(x1))) | (134) |
5#(2(0(x1))) | → | 3#(3(5(x1))) | (59) |
5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
5#(4(3(0(0(x1))))) | → | 5#(x1) | (53) |
5#(2(0(x1))) | → | 5#(x1) | (76) |
[0#(x1)] | = | x1 + 4 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | x1 + 0 |
[5(x1)] | = | x1 + 0 |
[3(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 3 |
[3#(x1)] | = | x1 + 0 |
[5#(x1)] | = | x1 + 2 |
[2(x1)] | = | x1 + 0 |
3(0(0(x1))) | → | 3(0(2(4(0(2(x1)))))) | (18) |
0(0(x1)) | → | 1(0(1(2(0(x1))))) | (4) |
0(0(0(x1))) | → | 0(1(0(4(0(4(x1)))))) | (15) |
0(0(x1)) | → | 0(1(0(2(1(2(x1)))))) | (8) |
0(0(x1)) | → | 0(1(0(2(x1)))) | (1) |
0(0(x1)) | → | 1(0(1(0(1(x1))))) | (3) |
0(0(0(x1))) | → | 3(0(0(1(0(2(x1)))))) | (16) |
5(2(0(x1))) | → | 0(2(3(3(5(x1))))) | (21) |
5(4(2(0(x1)))) | → | 2(4(3(5(0(x1))))) | (36) |
0(5(2(0(x1)))) | → | 0(5(0(2(2(x1))))) | (26) |
5(2(0(x1))) | → | 0(2(3(5(x1)))) | (19) |
5(2(2(0(x1)))) | → | 0(2(1(2(4(5(x1)))))) | (32) |
3(0(0(x1))) | → | 3(0(2(0(3(x1))))) | (17) |
3(4(0(0(x1)))) | → | 0(3(3(0(4(5(x1)))))) | (27) |
5(3(2(0(x1)))) | → | 3(3(5(3(0(2(x1)))))) | (34) |
5(2(0(x1))) | → | 1(0(2(3(5(x1))))) | (22) |
3(4(0(0(x1)))) | → | 3(0(4(5(3(0(x1)))))) | (28) |
5(3(3(2(0(x1))))) | → | 5(2(3(3(0(2(x1)))))) | (44) |
0(0(x1)) | → | 1(0(2(0(3(x1))))) | (5) |
5(3(2(0(x1)))) | → | 5(3(0(1(2(x1))))) | (33) |
0(0(x1)) | → | 1(0(1(3(0(1(x1)))))) | (10) |
0(3(5(2(0(x1))))) | → | 3(0(2(5(3(0(x1)))))) | (39) |
0(0(x1)) | → | 2(1(0(2(0(x1))))) | (7) |
5(2(0(x1))) | → | 3(5(0(2(x1)))) | (20) |
5(2(0(x1))) | → | 5(3(5(1(0(2(x1)))))) | (25) |
5(1(4(0(x1)))) | → | 0(1(5(2(4(x1))))) | (30) |
0(0(x1)) | → | 3(1(0(1(0(4(x1)))))) | (14) |
5(1(5(0(x1)))) | → | 5(1(0(3(5(x1))))) | (31) |
0(0(x1)) | → | 1(1(1(0(2(0(x1)))))) | (12) |
5(4(3(0(0(x1))))) | → | 1(0(4(0(3(5(x1)))))) | (45) |
5(2(0(x1))) | → | 5(1(0(2(4(x1))))) | (23) |
5(2(0(x1))) | → | 5(0(1(2(2(2(x1)))))) | (24) |
0(0(x1)) | → | 1(0(4(1(0(2(x1)))))) | (11) |
0(0(x1)) | → | 1(0(1(0(2(2(x1)))))) | (9) |
0(0(x1)) | → | 3(0(4(0(2(2(x1)))))) | (13) |
3(3(5(2(0(x1))))) | → | 3(5(2(3(0(2(x1)))))) | (40) |
0(0(x1)) | → | 1(0(2(2(0(x1))))) | (6) |
5(4(2(0(x1)))) | → | 5(4(5(0(2(x1))))) | (38) |
5(4(2(0(x1)))) | → | 5(0(2(2(4(x1))))) | (37) |
3(3(5(2(0(x1))))) | → | 4(3(3(5(0(2(x1)))))) | (41) |
5(0(5(2(0(x1))))) | → | 0(3(5(5(0(2(x1)))))) | (42) |
5(4(0(0(x1)))) | → | 0(4(5(5(0(2(x1)))))) | (35) |
5(1(0(0(x1)))) | → | 0(3(1(0(1(5(x1)))))) | (29) |
5(1(4(0(0(x1))))) | → | 0(2(5(0(1(4(x1)))))) | (43) |
0(0(x1)) | → | 1(0(2(0(x1)))) | (2) |
5#(1(5(0(x1)))) | → | 3#(5(x1)) | (165) |
5#(2(2(0(x1)))) | → | 5#(x1) | (163) |
5#(1(5(0(x1)))) | → | 0#(3(5(x1))) | (117) |
5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
3#(0(0(x1))) | → | 3#(x1) | (160) |
5#(4(2(0(x1)))) | → | 3#(5(0(x1))) | (112) |
3#(0(0(x1))) | → | 0#(3(x1)) | (104) |
5#(1(0(0(x1)))) | → | 5#(x1) | (157) |
5#(4(3(0(0(x1))))) | → | 3#(5(x1)) | (101) |
0#(0(x1)) | → | 3#(x1) | (155) |
0#(0(x1)) | → | 0#(3(x1)) | (91) |
0#(3(5(2(0(x1))))) | → | 3#(0(x1)) | (151) |
3#(4(0(0(x1)))) | → | 3#(0(x1)) | (150) |
3#(4(0(0(x1)))) | → | 5#(x1) | (89) |
5#(2(0(x1))) | → | 5#(x1) | (76) |
5#(1(5(0(x1)))) | → | 5#(x1) | (85) |
0#(3(5(2(0(x1))))) | → | 5#(3(0(x1))) | (82) |
0#(0(0(x1))) | → | 3#(0(0(1(0(2(x1)))))) | (143) |
5#(2(0(x1))) | → | 5#(x1) | (76) |
5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
3#(4(0(0(x1)))) | → | 5#(3(0(x1))) | (140) |
5#(4(3(0(0(x1))))) | → | 0#(3(5(x1))) | (134) |
5#(2(0(x1))) | → | 3#(3(5(x1))) | (59) |
5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
5#(4(3(0(0(x1))))) | → | 5#(x1) | (53) |
5#(2(0(x1))) | → | 5#(x1) | (76) |
The dependency pairs are split into 2 components.
5#(4(2(0(x1)))) | → | 5#(0(x1)) | (70) |
[0#(x1)] | = | x1 + 4 |
[1(x1)] | = | 1 |
[4(x1)] | = | 15944 |
[5(x1)] | = | 31204 |
[3(x1)] | = | x1 + 0 |
[0(x1)] | = | 1 |
[3#(x1)] | = | x1 + 0 |
[5#(x1)] | = | x1 + 2 |
[2(x1)] | = | 1 |
3(0(0(x1))) | → | 3(0(2(4(0(2(x1)))))) | (18) |
0(0(x1)) | → | 1(0(1(2(0(x1))))) | (4) |
0(0(0(x1))) | → | 0(1(0(4(0(4(x1)))))) | (15) |
0(0(x1)) | → | 0(1(0(2(1(2(x1)))))) | (8) |
0(0(x1)) | → | 0(1(0(2(x1)))) | (1) |
0(0(x1)) | → | 1(0(1(0(1(x1))))) | (3) |
0(0(0(x1))) | → | 3(0(0(1(0(2(x1)))))) | (16) |
5(2(0(x1))) | → | 0(2(3(3(5(x1))))) | (21) |
5(4(2(0(x1)))) | → | 2(4(3(5(0(x1))))) | (36) |
0(5(2(0(x1)))) | → | 0(5(0(2(2(x1))))) | (26) |
5(2(0(x1))) | → | 0(2(3(5(x1)))) | (19) |
5(2(2(0(x1)))) | → | 0(2(1(2(4(5(x1)))))) | (32) |
3(0(0(x1))) | → | 3(0(2(0(3(x1))))) | (17) |
3(4(0(0(x1)))) | → | 0(3(3(0(4(5(x1)))))) | (27) |
5(3(2(0(x1)))) | → | 3(3(5(3(0(2(x1)))))) | (34) |
5(2(0(x1))) | → | 1(0(2(3(5(x1))))) | (22) |
3(4(0(0(x1)))) | → | 3(0(4(5(3(0(x1)))))) | (28) |
5(3(3(2(0(x1))))) | → | 5(2(3(3(0(2(x1)))))) | (44) |
0(0(x1)) | → | 1(0(2(0(3(x1))))) | (5) |
5(3(2(0(x1)))) | → | 5(3(0(1(2(x1))))) | (33) |
0(0(x1)) | → | 1(0(1(3(0(1(x1)))))) | (10) |
0(3(5(2(0(x1))))) | → | 3(0(2(5(3(0(x1)))))) | (39) |
0(0(x1)) | → | 2(1(0(2(0(x1))))) | (7) |
5(2(0(x1))) | → | 3(5(0(2(x1)))) | (20) |
5(2(0(x1))) | → | 5(3(5(1(0(2(x1)))))) | (25) |
5(1(4(0(x1)))) | → | 0(1(5(2(4(x1))))) | (30) |
0(0(x1)) | → | 3(1(0(1(0(4(x1)))))) | (14) |
5(1(5(0(x1)))) | → | 5(1(0(3(5(x1))))) | (31) |
0(0(x1)) | → | 1(1(1(0(2(0(x1)))))) | (12) |
5(4(3(0(0(x1))))) | → | 1(0(4(0(3(5(x1)))))) | (45) |
5(2(0(x1))) | → | 5(1(0(2(4(x1))))) | (23) |
5(2(0(x1))) | → | 5(0(1(2(2(2(x1)))))) | (24) |
0(0(x1)) | → | 1(0(4(1(0(2(x1)))))) | (11) |
0(0(x1)) | → | 1(0(1(0(2(2(x1)))))) | (9) |
0(0(x1)) | → | 3(0(4(0(2(2(x1)))))) | (13) |
3(3(5(2(0(x1))))) | → | 3(5(2(3(0(2(x1)))))) | (40) |
0(0(x1)) | → | 1(0(2(2(0(x1))))) | (6) |
5(4(2(0(x1)))) | → | 5(4(5(0(2(x1))))) | (38) |
5(4(2(0(x1)))) | → | 5(0(2(2(4(x1))))) | (37) |
3(3(5(2(0(x1))))) | → | 4(3(3(5(0(2(x1)))))) | (41) |
5(0(5(2(0(x1))))) | → | 0(3(5(5(0(2(x1)))))) | (42) |
5(4(0(0(x1)))) | → | 0(4(5(5(0(2(x1)))))) | (35) |
5(1(0(0(x1)))) | → | 0(3(1(0(1(5(x1)))))) | (29) |
5(1(4(0(0(x1))))) | → | 0(2(5(0(1(4(x1)))))) | (43) |
0(0(x1)) | → | 1(0(2(0(x1)))) | (2) |
5#(4(2(0(x1)))) | → | 5#(0(x1)) | (70) |
The dependency pairs are split into 0 components.
5#(1(5(0(x1)))) | → | 5#(1(0(3(5(x1))))) | (67) |
[0#(x1)] | = | x1 + 4 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | 1 |
[5(x1)] | = | 2 |
[3(x1)] | = | x1 + 0 |
[0(x1)] | = | 1 |
[3#(x1)] | = | x1 + 0 |
[5#(x1)] | = | x1 + 2 |
[2(x1)] | = | 1 |
3(0(0(x1))) | → | 3(0(2(4(0(2(x1)))))) | (18) |
0(0(x1)) | → | 1(0(1(2(0(x1))))) | (4) |
0(0(0(x1))) | → | 0(1(0(4(0(4(x1)))))) | (15) |
0(0(x1)) | → | 0(1(0(2(1(2(x1)))))) | (8) |
0(0(x1)) | → | 0(1(0(2(x1)))) | (1) |
0(0(x1)) | → | 1(0(1(0(1(x1))))) | (3) |
0(0(0(x1))) | → | 3(0(0(1(0(2(x1)))))) | (16) |
5(2(0(x1))) | → | 0(2(3(3(5(x1))))) | (21) |
5(4(2(0(x1)))) | → | 2(4(3(5(0(x1))))) | (36) |
0(5(2(0(x1)))) | → | 0(5(0(2(2(x1))))) | (26) |
5(2(0(x1))) | → | 0(2(3(5(x1)))) | (19) |
5(2(2(0(x1)))) | → | 0(2(1(2(4(5(x1)))))) | (32) |
3(0(0(x1))) | → | 3(0(2(0(3(x1))))) | (17) |
3(4(0(0(x1)))) | → | 0(3(3(0(4(5(x1)))))) | (27) |
5(3(2(0(x1)))) | → | 3(3(5(3(0(2(x1)))))) | (34) |
5(2(0(x1))) | → | 1(0(2(3(5(x1))))) | (22) |
3(4(0(0(x1)))) | → | 3(0(4(5(3(0(x1)))))) | (28) |
5(3(3(2(0(x1))))) | → | 5(2(3(3(0(2(x1)))))) | (44) |
0(0(x1)) | → | 1(0(2(0(3(x1))))) | (5) |
5(3(2(0(x1)))) | → | 5(3(0(1(2(x1))))) | (33) |
0(0(x1)) | → | 1(0(1(3(0(1(x1)))))) | (10) |
0(3(5(2(0(x1))))) | → | 3(0(2(5(3(0(x1)))))) | (39) |
0(0(x1)) | → | 2(1(0(2(0(x1))))) | (7) |
5(2(0(x1))) | → | 3(5(0(2(x1)))) | (20) |
5(2(0(x1))) | → | 5(3(5(1(0(2(x1)))))) | (25) |
5(1(4(0(x1)))) | → | 0(1(5(2(4(x1))))) | (30) |
0(0(x1)) | → | 3(1(0(1(0(4(x1)))))) | (14) |
5(1(5(0(x1)))) | → | 5(1(0(3(5(x1))))) | (31) |
0(0(x1)) | → | 1(1(1(0(2(0(x1)))))) | (12) |
5(4(3(0(0(x1))))) | → | 1(0(4(0(3(5(x1)))))) | (45) |
5(2(0(x1))) | → | 5(1(0(2(4(x1))))) | (23) |
5(2(0(x1))) | → | 5(0(1(2(2(2(x1)))))) | (24) |
0(0(x1)) | → | 1(0(4(1(0(2(x1)))))) | (11) |
0(0(x1)) | → | 1(0(1(0(2(2(x1)))))) | (9) |
0(0(x1)) | → | 3(0(4(0(2(2(x1)))))) | (13) |
3(3(5(2(0(x1))))) | → | 3(5(2(3(0(2(x1)))))) | (40) |
0(0(x1)) | → | 1(0(2(2(0(x1))))) | (6) |
5(4(2(0(x1)))) | → | 5(4(5(0(2(x1))))) | (38) |
5(4(2(0(x1)))) | → | 5(0(2(2(4(x1))))) | (37) |
3(3(5(2(0(x1))))) | → | 4(3(3(5(0(2(x1)))))) | (41) |
5(0(5(2(0(x1))))) | → | 0(3(5(5(0(2(x1)))))) | (42) |
5(4(0(0(x1)))) | → | 0(4(5(5(0(2(x1)))))) | (35) |
5(1(0(0(x1)))) | → | 0(3(1(0(1(5(x1)))))) | (29) |
5(1(4(0(0(x1))))) | → | 0(2(5(0(1(4(x1)))))) | (43) |
0(0(x1)) | → | 1(0(2(0(x1)))) | (2) |
5#(1(5(0(x1)))) | → | 5#(1(0(3(5(x1))))) | (67) |
The dependency pairs are split into 0 components.