The rewrite relation of the following TRS is considered.
| 0(0(x1)) | → | 0(1(0(2(x1)))) | (1) |
| 0(0(x1)) | → | 1(0(2(0(x1)))) | (2) |
| 0(0(x1)) | → | 1(0(1(0(1(x1))))) | (3) |
| 0(0(x1)) | → | 1(0(1(2(0(x1))))) | (4) |
| 0(0(x1)) | → | 1(0(2(0(3(x1))))) | (5) |
| 0(0(x1)) | → | 1(0(2(2(0(x1))))) | (6) |
| 0(0(x1)) | → | 2(1(0(2(0(x1))))) | (7) |
| 0(0(x1)) | → | 0(1(0(2(1(2(x1)))))) | (8) |
| 0(0(x1)) | → | 1(0(1(0(2(2(x1)))))) | (9) |
| 0(0(x1)) | → | 1(0(1(3(0(1(x1)))))) | (10) |
| 0(0(x1)) | → | 1(0(4(1(0(2(x1)))))) | (11) |
| 0(0(x1)) | → | 1(1(1(0(2(0(x1)))))) | (12) |
| 0(0(x1)) | → | 3(0(4(0(2(2(x1)))))) | (13) |
| 0(0(x1)) | → | 3(1(0(1(0(4(x1)))))) | (14) |
| 0(0(0(x1))) | → | 0(1(0(4(0(4(x1)))))) | (15) |
| 0(0(0(x1))) | → | 3(0(0(1(0(2(x1)))))) | (16) |
| 3(0(0(x1))) | → | 3(0(2(0(3(x1))))) | (17) |
| 3(0(0(x1))) | → | 3(0(2(4(0(2(x1)))))) | (18) |
| 5(2(0(x1))) | → | 0(2(3(5(x1)))) | (19) |
| 5(2(0(x1))) | → | 3(5(0(2(x1)))) | (20) |
| 5(2(0(x1))) | → | 0(2(3(3(5(x1))))) | (21) |
| 5(2(0(x1))) | → | 1(0(2(3(5(x1))))) | (22) |
| 5(2(0(x1))) | → | 5(1(0(2(4(x1))))) | (23) |
| 5(2(0(x1))) | → | 5(0(1(2(2(2(x1)))))) | (24) |
| 5(2(0(x1))) | → | 5(3(5(1(0(2(x1)))))) | (25) |
| 0(5(2(0(x1)))) | → | 0(5(0(2(2(x1))))) | (26) |
| 3(4(0(0(x1)))) | → | 0(3(3(0(4(5(x1)))))) | (27) |
| 3(4(0(0(x1)))) | → | 3(0(4(5(3(0(x1)))))) | (28) |
| 5(1(0(0(x1)))) | → | 0(3(1(0(1(5(x1)))))) | (29) |
| 5(1(4(0(x1)))) | → | 0(1(5(2(4(x1))))) | (30) |
| 5(1(5(0(x1)))) | → | 5(1(0(3(5(x1))))) | (31) |
| 5(2(2(0(x1)))) | → | 0(2(1(2(4(5(x1)))))) | (32) |
| 5(3(2(0(x1)))) | → | 5(3(0(1(2(x1))))) | (33) |
| 5(3(2(0(x1)))) | → | 3(3(5(3(0(2(x1)))))) | (34) |
| 5(4(0(0(x1)))) | → | 0(4(5(5(0(2(x1)))))) | (35) |
| 5(4(2(0(x1)))) | → | 2(4(3(5(0(x1))))) | (36) |
| 5(4(2(0(x1)))) | → | 5(0(2(2(4(x1))))) | (37) |
| 5(4(2(0(x1)))) | → | 5(4(5(0(2(x1))))) | (38) |
| 0(3(5(2(0(x1))))) | → | 3(0(2(5(3(0(x1)))))) | (39) |
| 3(3(5(2(0(x1))))) | → | 3(5(2(3(0(2(x1)))))) | (40) |
| 3(3(5(2(0(x1))))) | → | 4(3(3(5(0(2(x1)))))) | (41) |
| 5(0(5(2(0(x1))))) | → | 0(3(5(5(0(2(x1)))))) | (42) |
| 5(1(4(0(0(x1))))) | → | 0(2(5(0(1(4(x1)))))) | (43) |
| 5(3(3(2(0(x1))))) | → | 5(2(3(3(0(2(x1)))))) | (44) |
| 5(4(3(0(0(x1))))) | → | 1(0(4(0(3(5(x1)))))) | (45) |
There are 133 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
| 5#(1(5(0(x1)))) | → | 3#(5(x1)) | (165) |
| 5#(2(2(0(x1)))) | → | 5#(x1) | (163) |
| 5#(1(5(0(x1)))) | → | 0#(3(5(x1))) | (117) |
| 5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
| 3#(0(0(x1))) | → | 3#(x1) | (160) |
| 5#(4(2(0(x1)))) | → | 3#(5(0(x1))) | (112) |
| 3#(0(0(x1))) | → | 0#(3(x1)) | (104) |
| 5#(1(0(0(x1)))) | → | 5#(x1) | (157) |
| 5#(4(3(0(0(x1))))) | → | 3#(5(x1)) | (101) |
| 0#(0(0(x1))) | → | 0#(0(1(0(2(x1))))) | (99) |
| 0#(0(x1)) | → | 3#(x1) | (155) |
| 0#(0(x1)) | → | 0#(3(x1)) | (91) |
| 0#(3(5(2(0(x1))))) | → | 3#(0(x1)) | (151) |
| 3#(4(0(0(x1)))) | → | 3#(0(x1)) | (150) |
| 3#(4(0(0(x1)))) | → | 5#(x1) | (89) |
| 5#(2(0(x1))) | → | 5#(x1) | (76) |
| 5#(1(5(0(x1)))) | → | 5#(x1) | (85) |
| 0#(3(5(2(0(x1))))) | → | 5#(3(0(x1))) | (82) |
| 0#(0(0(x1))) | → | 3#(0(0(1(0(2(x1)))))) | (143) |
| 5#(2(0(x1))) | → | 5#(x1) | (76) |
| 5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
| 3#(4(0(0(x1)))) | → | 5#(3(0(x1))) | (140) |
| 5#(4(2(0(x1)))) | → | 5#(0(x1)) | (70) |
| 5#(1(5(0(x1)))) | → | 5#(1(0(3(5(x1))))) | (67) |
| 5#(4(3(0(0(x1))))) | → | 0#(3(5(x1))) | (134) |
| 5#(2(0(x1))) | → | 3#(3(5(x1))) | (59) |
| 5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
| 5#(4(3(0(0(x1))))) | → | 5#(x1) | (53) |
| 5#(2(0(x1))) | → | 5#(x1) | (76) |
| [0#(x1)] | = | x1 + 4 |
| [1(x1)] | = | x1 + 0 |
| [4(x1)] | = | x1 + 0 |
| [5(x1)] | = | x1 + 0 |
| [3(x1)] | = | x1 + 0 |
| [0(x1)] | = | x1 + 3 |
| [3#(x1)] | = | x1 + 0 |
| [5#(x1)] | = | x1 + 2 |
| [2(x1)] | = | x1 + 0 |
| 3(0(0(x1))) | → | 3(0(2(4(0(2(x1)))))) | (18) |
| 0(0(x1)) | → | 1(0(1(2(0(x1))))) | (4) |
| 0(0(0(x1))) | → | 0(1(0(4(0(4(x1)))))) | (15) |
| 0(0(x1)) | → | 0(1(0(2(1(2(x1)))))) | (8) |
| 0(0(x1)) | → | 0(1(0(2(x1)))) | (1) |
| 0(0(x1)) | → | 1(0(1(0(1(x1))))) | (3) |
| 0(0(0(x1))) | → | 3(0(0(1(0(2(x1)))))) | (16) |
| 5(2(0(x1))) | → | 0(2(3(3(5(x1))))) | (21) |
| 5(4(2(0(x1)))) | → | 2(4(3(5(0(x1))))) | (36) |
| 0(5(2(0(x1)))) | → | 0(5(0(2(2(x1))))) | (26) |
| 5(2(0(x1))) | → | 0(2(3(5(x1)))) | (19) |
| 5(2(2(0(x1)))) | → | 0(2(1(2(4(5(x1)))))) | (32) |
| 3(0(0(x1))) | → | 3(0(2(0(3(x1))))) | (17) |
| 3(4(0(0(x1)))) | → | 0(3(3(0(4(5(x1)))))) | (27) |
| 5(3(2(0(x1)))) | → | 3(3(5(3(0(2(x1)))))) | (34) |
| 5(2(0(x1))) | → | 1(0(2(3(5(x1))))) | (22) |
| 3(4(0(0(x1)))) | → | 3(0(4(5(3(0(x1)))))) | (28) |
| 5(3(3(2(0(x1))))) | → | 5(2(3(3(0(2(x1)))))) | (44) |
| 0(0(x1)) | → | 1(0(2(0(3(x1))))) | (5) |
| 5(3(2(0(x1)))) | → | 5(3(0(1(2(x1))))) | (33) |
| 0(0(x1)) | → | 1(0(1(3(0(1(x1)))))) | (10) |
| 0(3(5(2(0(x1))))) | → | 3(0(2(5(3(0(x1)))))) | (39) |
| 0(0(x1)) | → | 2(1(0(2(0(x1))))) | (7) |
| 5(2(0(x1))) | → | 3(5(0(2(x1)))) | (20) |
| 5(2(0(x1))) | → | 5(3(5(1(0(2(x1)))))) | (25) |
| 5(1(4(0(x1)))) | → | 0(1(5(2(4(x1))))) | (30) |
| 0(0(x1)) | → | 3(1(0(1(0(4(x1)))))) | (14) |
| 5(1(5(0(x1)))) | → | 5(1(0(3(5(x1))))) | (31) |
| 0(0(x1)) | → | 1(1(1(0(2(0(x1)))))) | (12) |
| 5(4(3(0(0(x1))))) | → | 1(0(4(0(3(5(x1)))))) | (45) |
| 5(2(0(x1))) | → | 5(1(0(2(4(x1))))) | (23) |
| 5(2(0(x1))) | → | 5(0(1(2(2(2(x1)))))) | (24) |
| 0(0(x1)) | → | 1(0(4(1(0(2(x1)))))) | (11) |
| 0(0(x1)) | → | 1(0(1(0(2(2(x1)))))) | (9) |
| 0(0(x1)) | → | 3(0(4(0(2(2(x1)))))) | (13) |
| 3(3(5(2(0(x1))))) | → | 3(5(2(3(0(2(x1)))))) | (40) |
| 0(0(x1)) | → | 1(0(2(2(0(x1))))) | (6) |
| 5(4(2(0(x1)))) | → | 5(4(5(0(2(x1))))) | (38) |
| 5(4(2(0(x1)))) | → | 5(0(2(2(4(x1))))) | (37) |
| 3(3(5(2(0(x1))))) | → | 4(3(3(5(0(2(x1)))))) | (41) |
| 5(0(5(2(0(x1))))) | → | 0(3(5(5(0(2(x1)))))) | (42) |
| 5(4(0(0(x1)))) | → | 0(4(5(5(0(2(x1)))))) | (35) |
| 5(1(0(0(x1)))) | → | 0(3(1(0(1(5(x1)))))) | (29) |
| 5(1(4(0(0(x1))))) | → | 0(2(5(0(1(4(x1)))))) | (43) |
| 0(0(x1)) | → | 1(0(2(0(x1)))) | (2) |
| 5#(1(5(0(x1)))) | → | 3#(5(x1)) | (165) |
| 5#(2(2(0(x1)))) | → | 5#(x1) | (163) |
| 5#(1(5(0(x1)))) | → | 0#(3(5(x1))) | (117) |
| 5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
| 3#(0(0(x1))) | → | 3#(x1) | (160) |
| 5#(4(2(0(x1)))) | → | 3#(5(0(x1))) | (112) |
| 3#(0(0(x1))) | → | 0#(3(x1)) | (104) |
| 5#(1(0(0(x1)))) | → | 5#(x1) | (157) |
| 5#(4(3(0(0(x1))))) | → | 3#(5(x1)) | (101) |
| 0#(0(x1)) | → | 3#(x1) | (155) |
| 0#(0(x1)) | → | 0#(3(x1)) | (91) |
| 0#(3(5(2(0(x1))))) | → | 3#(0(x1)) | (151) |
| 3#(4(0(0(x1)))) | → | 3#(0(x1)) | (150) |
| 3#(4(0(0(x1)))) | → | 5#(x1) | (89) |
| 5#(2(0(x1))) | → | 5#(x1) | (76) |
| 5#(1(5(0(x1)))) | → | 5#(x1) | (85) |
| 0#(3(5(2(0(x1))))) | → | 5#(3(0(x1))) | (82) |
| 0#(0(0(x1))) | → | 3#(0(0(1(0(2(x1)))))) | (143) |
| 5#(2(0(x1))) | → | 5#(x1) | (76) |
| 5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
| 3#(4(0(0(x1)))) | → | 5#(3(0(x1))) | (140) |
| 5#(4(3(0(0(x1))))) | → | 0#(3(5(x1))) | (134) |
| 5#(2(0(x1))) | → | 3#(3(5(x1))) | (59) |
| 5#(2(0(x1))) | → | 3#(5(x1)) | (55) |
| 5#(4(3(0(0(x1))))) | → | 5#(x1) | (53) |
| 5#(2(0(x1))) | → | 5#(x1) | (76) |
The dependency pairs are split into 2 components.
| 5#(4(2(0(x1)))) | → | 5#(0(x1)) | (70) |
| [0#(x1)] | = | x1 + 4 |
| [1(x1)] | = | 1 |
| [4(x1)] | = | 15944 |
| [5(x1)] | = | 31204 |
| [3(x1)] | = | x1 + 0 |
| [0(x1)] | = | 1 |
| [3#(x1)] | = | x1 + 0 |
| [5#(x1)] | = | x1 + 2 |
| [2(x1)] | = | 1 |
| 3(0(0(x1))) | → | 3(0(2(4(0(2(x1)))))) | (18) |
| 0(0(x1)) | → | 1(0(1(2(0(x1))))) | (4) |
| 0(0(0(x1))) | → | 0(1(0(4(0(4(x1)))))) | (15) |
| 0(0(x1)) | → | 0(1(0(2(1(2(x1)))))) | (8) |
| 0(0(x1)) | → | 0(1(0(2(x1)))) | (1) |
| 0(0(x1)) | → | 1(0(1(0(1(x1))))) | (3) |
| 0(0(0(x1))) | → | 3(0(0(1(0(2(x1)))))) | (16) |
| 5(2(0(x1))) | → | 0(2(3(3(5(x1))))) | (21) |
| 5(4(2(0(x1)))) | → | 2(4(3(5(0(x1))))) | (36) |
| 0(5(2(0(x1)))) | → | 0(5(0(2(2(x1))))) | (26) |
| 5(2(0(x1))) | → | 0(2(3(5(x1)))) | (19) |
| 5(2(2(0(x1)))) | → | 0(2(1(2(4(5(x1)))))) | (32) |
| 3(0(0(x1))) | → | 3(0(2(0(3(x1))))) | (17) |
| 3(4(0(0(x1)))) | → | 0(3(3(0(4(5(x1)))))) | (27) |
| 5(3(2(0(x1)))) | → | 3(3(5(3(0(2(x1)))))) | (34) |
| 5(2(0(x1))) | → | 1(0(2(3(5(x1))))) | (22) |
| 3(4(0(0(x1)))) | → | 3(0(4(5(3(0(x1)))))) | (28) |
| 5(3(3(2(0(x1))))) | → | 5(2(3(3(0(2(x1)))))) | (44) |
| 0(0(x1)) | → | 1(0(2(0(3(x1))))) | (5) |
| 5(3(2(0(x1)))) | → | 5(3(0(1(2(x1))))) | (33) |
| 0(0(x1)) | → | 1(0(1(3(0(1(x1)))))) | (10) |
| 0(3(5(2(0(x1))))) | → | 3(0(2(5(3(0(x1)))))) | (39) |
| 0(0(x1)) | → | 2(1(0(2(0(x1))))) | (7) |
| 5(2(0(x1))) | → | 3(5(0(2(x1)))) | (20) |
| 5(2(0(x1))) | → | 5(3(5(1(0(2(x1)))))) | (25) |
| 5(1(4(0(x1)))) | → | 0(1(5(2(4(x1))))) | (30) |
| 0(0(x1)) | → | 3(1(0(1(0(4(x1)))))) | (14) |
| 5(1(5(0(x1)))) | → | 5(1(0(3(5(x1))))) | (31) |
| 0(0(x1)) | → | 1(1(1(0(2(0(x1)))))) | (12) |
| 5(4(3(0(0(x1))))) | → | 1(0(4(0(3(5(x1)))))) | (45) |
| 5(2(0(x1))) | → | 5(1(0(2(4(x1))))) | (23) |
| 5(2(0(x1))) | → | 5(0(1(2(2(2(x1)))))) | (24) |
| 0(0(x1)) | → | 1(0(4(1(0(2(x1)))))) | (11) |
| 0(0(x1)) | → | 1(0(1(0(2(2(x1)))))) | (9) |
| 0(0(x1)) | → | 3(0(4(0(2(2(x1)))))) | (13) |
| 3(3(5(2(0(x1))))) | → | 3(5(2(3(0(2(x1)))))) | (40) |
| 0(0(x1)) | → | 1(0(2(2(0(x1))))) | (6) |
| 5(4(2(0(x1)))) | → | 5(4(5(0(2(x1))))) | (38) |
| 5(4(2(0(x1)))) | → | 5(0(2(2(4(x1))))) | (37) |
| 3(3(5(2(0(x1))))) | → | 4(3(3(5(0(2(x1)))))) | (41) |
| 5(0(5(2(0(x1))))) | → | 0(3(5(5(0(2(x1)))))) | (42) |
| 5(4(0(0(x1)))) | → | 0(4(5(5(0(2(x1)))))) | (35) |
| 5(1(0(0(x1)))) | → | 0(3(1(0(1(5(x1)))))) | (29) |
| 5(1(4(0(0(x1))))) | → | 0(2(5(0(1(4(x1)))))) | (43) |
| 0(0(x1)) | → | 1(0(2(0(x1)))) | (2) |
| 5#(4(2(0(x1)))) | → | 5#(0(x1)) | (70) |
The dependency pairs are split into 0 components.
| 5#(1(5(0(x1)))) | → | 5#(1(0(3(5(x1))))) | (67) |
| [0#(x1)] | = | x1 + 4 |
| [1(x1)] | = | x1 + 0 |
| [4(x1)] | = | 1 |
| [5(x1)] | = | 2 |
| [3(x1)] | = | x1 + 0 |
| [0(x1)] | = | 1 |
| [3#(x1)] | = | x1 + 0 |
| [5#(x1)] | = | x1 + 2 |
| [2(x1)] | = | 1 |
| 3(0(0(x1))) | → | 3(0(2(4(0(2(x1)))))) | (18) |
| 0(0(x1)) | → | 1(0(1(2(0(x1))))) | (4) |
| 0(0(0(x1))) | → | 0(1(0(4(0(4(x1)))))) | (15) |
| 0(0(x1)) | → | 0(1(0(2(1(2(x1)))))) | (8) |
| 0(0(x1)) | → | 0(1(0(2(x1)))) | (1) |
| 0(0(x1)) | → | 1(0(1(0(1(x1))))) | (3) |
| 0(0(0(x1))) | → | 3(0(0(1(0(2(x1)))))) | (16) |
| 5(2(0(x1))) | → | 0(2(3(3(5(x1))))) | (21) |
| 5(4(2(0(x1)))) | → | 2(4(3(5(0(x1))))) | (36) |
| 0(5(2(0(x1)))) | → | 0(5(0(2(2(x1))))) | (26) |
| 5(2(0(x1))) | → | 0(2(3(5(x1)))) | (19) |
| 5(2(2(0(x1)))) | → | 0(2(1(2(4(5(x1)))))) | (32) |
| 3(0(0(x1))) | → | 3(0(2(0(3(x1))))) | (17) |
| 3(4(0(0(x1)))) | → | 0(3(3(0(4(5(x1)))))) | (27) |
| 5(3(2(0(x1)))) | → | 3(3(5(3(0(2(x1)))))) | (34) |
| 5(2(0(x1))) | → | 1(0(2(3(5(x1))))) | (22) |
| 3(4(0(0(x1)))) | → | 3(0(4(5(3(0(x1)))))) | (28) |
| 5(3(3(2(0(x1))))) | → | 5(2(3(3(0(2(x1)))))) | (44) |
| 0(0(x1)) | → | 1(0(2(0(3(x1))))) | (5) |
| 5(3(2(0(x1)))) | → | 5(3(0(1(2(x1))))) | (33) |
| 0(0(x1)) | → | 1(0(1(3(0(1(x1)))))) | (10) |
| 0(3(5(2(0(x1))))) | → | 3(0(2(5(3(0(x1)))))) | (39) |
| 0(0(x1)) | → | 2(1(0(2(0(x1))))) | (7) |
| 5(2(0(x1))) | → | 3(5(0(2(x1)))) | (20) |
| 5(2(0(x1))) | → | 5(3(5(1(0(2(x1)))))) | (25) |
| 5(1(4(0(x1)))) | → | 0(1(5(2(4(x1))))) | (30) |
| 0(0(x1)) | → | 3(1(0(1(0(4(x1)))))) | (14) |
| 5(1(5(0(x1)))) | → | 5(1(0(3(5(x1))))) | (31) |
| 0(0(x1)) | → | 1(1(1(0(2(0(x1)))))) | (12) |
| 5(4(3(0(0(x1))))) | → | 1(0(4(0(3(5(x1)))))) | (45) |
| 5(2(0(x1))) | → | 5(1(0(2(4(x1))))) | (23) |
| 5(2(0(x1))) | → | 5(0(1(2(2(2(x1)))))) | (24) |
| 0(0(x1)) | → | 1(0(4(1(0(2(x1)))))) | (11) |
| 0(0(x1)) | → | 1(0(1(0(2(2(x1)))))) | (9) |
| 0(0(x1)) | → | 3(0(4(0(2(2(x1)))))) | (13) |
| 3(3(5(2(0(x1))))) | → | 3(5(2(3(0(2(x1)))))) | (40) |
| 0(0(x1)) | → | 1(0(2(2(0(x1))))) | (6) |
| 5(4(2(0(x1)))) | → | 5(4(5(0(2(x1))))) | (38) |
| 5(4(2(0(x1)))) | → | 5(0(2(2(4(x1))))) | (37) |
| 3(3(5(2(0(x1))))) | → | 4(3(3(5(0(2(x1)))))) | (41) |
| 5(0(5(2(0(x1))))) | → | 0(3(5(5(0(2(x1)))))) | (42) |
| 5(4(0(0(x1)))) | → | 0(4(5(5(0(2(x1)))))) | (35) |
| 5(1(0(0(x1)))) | → | 0(3(1(0(1(5(x1)))))) | (29) |
| 5(1(4(0(0(x1))))) | → | 0(2(5(0(1(4(x1)))))) | (43) |
| 0(0(x1)) | → | 1(0(2(0(x1)))) | (2) |
| 5#(1(5(0(x1)))) | → | 5#(1(0(3(5(x1))))) | (67) |
The dependency pairs are split into 0 components.