The rewrite relation of the following TRS is considered.
0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
There are 171 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
0#(5(4(2(x1)))) | → | 5#(x1) | (142) |
0#(1(2(3(x1)))) | → | 0#(2(0(1(3(x1))))) | (140) |
0#(2(1(2(2(x1))))) | → | 2#(0(2(2(1(x1))))) | (215) |
2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
0#(5(0(1(2(x1))))) | → | 0#(0(2(0(1(5(x1)))))) | (135) |
5#(2(0(1(2(x1))))) | → | 2#(2(x1)) | (131) |
0#(2(1(2(2(x1))))) | → | 2#(2(1(x1))) | (130) |
2#(1(0(4(x1)))) | → | 2#(2(2(x1))) | (129) |
2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
0#(2(1(2(2(x1))))) | → | 0#(2(0(2(2(1(x1)))))) | (126) |
0#(5(0(1(2(x1))))) | → | 0#(2(0(1(5(x1))))) | (124) |
0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
0#(4(1(2(x1)))) | → | 0#(1(x1)) | (121) |
0#(1(2(2(x1)))) | → | 2#(2(0(x1))) | (206) |
5#(0(1(2(2(x1))))) | → | 0#(2(x1)) | (205) |
0#(2(1(2(x1)))) | → | 0#(1(x1)) | (119) |
0#(3(2(2(x1)))) | → | 0#(2(2(x1))) | (203) |
0#(5(0(5(x1)))) | → | 5#(5(x1)) | (118) |
0#(0(5(4(2(x1))))) | → | 5#(x1) | (117) |
0#(5(0(0(3(x1))))) | → | 0#(3(0(5(x1)))) | (201) |
0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
0#(2(1(2(2(x1))))) | → | 0#(2(2(1(x1)))) | (116) |
0#(1(2(2(x1)))) | → | 0#(2(2(1(0(x1))))) | (200) |
0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
0#(2(3(0(5(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (113) |
2#(1(0(4(x1)))) | → | 2#(2(x1)) | (112) |
0#(1(2(2(x1)))) | → | 2#(1(0(x1))) | (197) |
0#(4(5(2(3(x1))))) | → | 5#(x1) | (196) |
0#(2(1(2(x1)))) | → | 2#(2(1(x1))) | (110) |
0#(1(2(3(x1)))) | → | 2#(0(1(3(x1)))) | (108) |
0#(5(0(5(x1)))) | → | 2#(0(5(5(x1)))) | (107) |
0#(4(1(2(x1)))) | → | 2#(0(1(x1))) | (192) |
0#(1(2(2(2(x1))))) | → | 2#(2(2(1(2(x1))))) | (190) |
2#(5(0(0(3(x1))))) | → | 2#(0(0(5(3(x1))))) | (188) |
2#(1(0(4(x1)))) | → | 2#(x1) | (186) |
0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
0#(5(0(1(2(x1))))) | → | 2#(0(1(5(x1)))) | (181) |
2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
0#(4(1(2(x1)))) | → | 0#(2(0(1(x1)))) | (95) |
2#(1(0(4(x1)))) | → | 0#(2(2(2(x1)))) | (93) |
0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
5#(2(0(1(2(x1))))) | → | 0#(2(2(x1))) | (92) |
0#(5(2(5(x1)))) | → | 5#(5(x1)) | (177) |
5#(0(1(2(2(x1))))) | → | 0#(2(0(2(x1)))) | (89) |
0#(5(0(0(3(x1))))) | → | 5#(x1) | (175) |
0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
0#(1(2(3(2(x1))))) | → | 2#(2(x1)) | (173) |
0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
0#(1(2(2(x1)))) | → | 0#(2(2(0(x1)))) | (85) |
0#(1(2(2(2(x1))))) | → | 2#(1(2(x1))) | (170) |
0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
0#(1(2(2(2(x1))))) | → | 0#(2(2(2(1(2(x1)))))) | (169) |
0#(5(0(1(2(x1))))) | → | 5#(x1) | (167) |
0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
2#(1(0(0(4(x1))))) | → | 2#(x1) | (73) |
0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
0#(5(0(0(3(x1))))) | → | 2#(0(3(0(5(x1))))) | (72) |
0#(5(4(2(x1)))) | → | 2#(0(5(x1))) | (165) |
0#(2(3(0(5(x1))))) | → | 2#(0(0(5(3(x1))))) | (70) |
0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
0#(2(3(0(5(x1))))) | → | 0#(5(3(x1))) | (67) |
2#(1(0(0(4(x1))))) | → | 0#(2(x1)) | (68) |
0#(2(1(2(x1)))) | → | 2#(0(1(x1))) | (160) |
2#(5(4(2(x1)))) | → | 5#(x1) | (66) |
0#(0(5(4(2(x1))))) | → | 0#(4(0(0(2(5(x1)))))) | (62) |
0#(2(3(0(5(x1))))) | → | 0#(0(5(3(x1)))) | (156) |
0#(5(0(1(2(x1))))) | → | 0#(1(5(x1))) | (155) |
0#(2(1(2(x1)))) | → | 2#(2(2(1(x1)))) | (153) |
0#(5(1(4(2(x1))))) | → | 5#(x1) | (60) |
0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
0#(2(1(2(x1)))) | → | 2#(1(x1)) | (59) |
0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
0#(2(1(2(x1)))) | → | 0#(2(2(2(1(x1))))) | (151) |
0#(2(1(2(x1)))) | → | 0#(2(2(0(1(x1))))) | (56) |
0#(1(2(3(2(x1))))) | → | 0#(2(2(x1))) | (149) |
2#(1(0(0(4(x1))))) | → | 0#(0(2(x1))) | (55) |
0#(1(2(2(x1)))) | → | 2#(0(x1)) | (148) |
0#(2(1(2(2(x1))))) | → | 2#(1(x1)) | (53) |
2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
5#(0(1(2(2(x1))))) | → | 2#(0(2(x1))) | (146) |
0#(5(4(2(x1)))) | → | 2#(2(0(5(x1)))) | (144) |
0#(1(2(2(2(x1))))) | → | 2#(2(1(2(x1)))) | (49) |
0#(2(1(2(x1)))) | → | 2#(2(0(1(x1)))) | (50) |
0#(1(2(2(x1)))) | → | 2#(2(1(0(x1)))) | (48) |
[0#(x1)] | = | x1 + 0 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | x1 + 0 |
[5(x1)] | = | x1 + 29535 |
[3(x1)] | = | x1 + 0 |
[2#(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 0 |
[5#(x1)] | = | x1 + 1 |
[2(x1)] | = | x1 + 0 |
2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
0#(5(4(2(x1)))) | → | 5#(x1) | (142) |
5#(2(0(1(2(x1))))) | → | 2#(2(x1)) | (131) |
5#(0(1(2(2(x1))))) | → | 0#(2(x1)) | (205) |
0#(5(0(5(x1)))) | → | 5#(5(x1)) | (118) |
0#(0(5(4(2(x1))))) | → | 5#(x1) | (117) |
0#(4(5(2(3(x1))))) | → | 5#(x1) | (196) |
5#(2(0(1(2(x1))))) | → | 0#(2(2(x1))) | (92) |
0#(5(2(5(x1)))) | → | 5#(5(x1)) | (177) |
5#(0(1(2(2(x1))))) | → | 0#(2(0(2(x1)))) | (89) |
0#(5(0(0(3(x1))))) | → | 5#(x1) | (175) |
0#(5(0(1(2(x1))))) | → | 5#(x1) | (167) |
2#(5(4(2(x1)))) | → | 5#(x1) | (66) |
0#(5(1(4(2(x1))))) | → | 5#(x1) | (60) |
5#(0(1(2(2(x1))))) | → | 2#(0(2(x1))) | (146) |
The dependency pairs are split into 1 component.
0#(1(2(3(x1)))) | → | 2#(0(1(3(x1)))) | (108) |
0#(1(2(3(x1)))) | → | 0#(2(0(1(3(x1))))) | (140) |
0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
0#(1(2(2(x1)))) | → | 2#(0(x1)) | (148) |
0#(1(2(2(x1)))) | → | 2#(2(0(x1))) | (206) |
0#(1(2(2(x1)))) | → | 0#(2(2(0(x1)))) | (85) |
0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
0#(5(0(0(3(x1))))) | → | 0#(3(0(5(x1)))) | (201) |
0#(5(0(0(3(x1))))) | → | 2#(0(3(0(5(x1))))) | (72) |
0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
0#(1(2(3(2(x1))))) | → | 2#(2(x1)) | (173) |
0#(1(2(3(2(x1))))) | → | 0#(2(2(x1))) | (149) |
2#(1(0(4(x1)))) | → | 2#(x1) | (186) |
2#(1(0(4(x1)))) | → | 2#(2(x1)) | (112) |
2#(1(0(4(x1)))) | → | 2#(2(2(x1))) | (129) |
2#(1(0(4(x1)))) | → | 0#(2(2(2(x1)))) | (93) |
0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
0#(5(4(2(x1)))) | → | 2#(0(5(x1))) | (165) |
0#(5(4(2(x1)))) | → | 2#(2(0(5(x1)))) | (144) |
0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
0#(0(5(4(2(x1))))) | → | 0#(4(0(0(2(5(x1)))))) | (62) |
0#(2(1(2(x1)))) | → | 2#(1(x1)) | (59) |
0#(2(1(2(x1)))) | → | 2#(2(1(x1))) | (110) |
0#(2(1(2(x1)))) | → | 2#(2(2(1(x1)))) | (153) |
0#(2(1(2(x1)))) | → | 0#(2(2(2(1(x1))))) | (151) |
2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
0#(1(2(2(2(x1))))) | → | 2#(1(2(x1))) | (170) |
0#(1(2(2(2(x1))))) | → | 2#(2(1(2(x1)))) | (49) |
0#(1(2(2(2(x1))))) | → | 2#(2(2(1(2(x1))))) | (190) |
0#(1(2(2(2(x1))))) | → | 0#(2(2(2(1(2(x1)))))) | (169) |
0#(2(1(2(2(x1))))) | → | 2#(1(x1)) | (53) |
0#(2(1(2(2(x1))))) | → | 2#(2(1(x1))) | (130) |
0#(2(1(2(2(x1))))) | → | 0#(2(2(1(x1)))) | (116) |
0#(2(1(2(2(x1))))) | → | 2#(0(2(2(1(x1))))) | (215) |
0#(2(1(2(2(x1))))) | → | 0#(2(0(2(2(1(x1)))))) | (126) |
0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
0#(5(0(5(x1)))) | → | 2#(0(5(5(x1)))) | (107) |
0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
0#(2(3(0(5(x1))))) | → | 0#(5(3(x1))) | (67) |
0#(2(3(0(5(x1))))) | → | 0#(0(5(3(x1)))) | (156) |
0#(2(3(0(5(x1))))) | → | 2#(0(0(5(3(x1))))) | (70) |
0#(2(3(0(5(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (113) |
0#(4(1(2(x1)))) | → | 0#(1(x1)) | (121) |
0#(4(1(2(x1)))) | → | 2#(0(1(x1))) | (192) |
0#(4(1(2(x1)))) | → | 0#(2(0(1(x1)))) | (95) |
0#(3(2(2(x1)))) | → | 0#(2(2(x1))) | (203) |
2#(1(0(0(4(x1))))) | → | 2#(x1) | (73) |
2#(1(0(0(4(x1))))) | → | 0#(2(x1)) | (68) |
2#(1(0(0(4(x1))))) | → | 0#(0(2(x1))) | (55) |
0#(2(1(2(x1)))) | → | 0#(1(x1)) | (119) |
0#(2(1(2(x1)))) | → | 2#(0(1(x1))) | (160) |
0#(2(1(2(x1)))) | → | 2#(2(0(1(x1)))) | (50) |
0#(2(1(2(x1)))) | → | 0#(2(2(0(1(x1))))) | (56) |
0#(5(0(1(2(x1))))) | → | 0#(1(5(x1))) | (155) |
0#(5(0(1(2(x1))))) | → | 2#(0(1(5(x1)))) | (181) |
0#(5(0(1(2(x1))))) | → | 0#(2(0(1(5(x1))))) | (124) |
0#(5(0(1(2(x1))))) | → | 0#(0(2(0(1(5(x1)))))) | (135) |
2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
2#(5(0(0(3(x1))))) | → | 2#(0(0(5(3(x1))))) | (188) |
2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
0#(1(2(2(x1)))) | → | 2#(1(0(x1))) | (197) |
0#(1(2(2(x1)))) | → | 2#(2(1(0(x1)))) | (48) |
0#(1(2(2(x1)))) | → | 0#(2(2(1(0(x1))))) | (200) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[2#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[5#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
0#(1(2(3(x1)))) | → | 2#(0(1(3(x1)))) | (108) |
0#(1(2(3(x1)))) | → | 0#(2(0(1(3(x1))))) | (140) |
0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
0#(1(2(2(x1)))) | → | 2#(0(x1)) | (148) |
0#(1(2(2(x1)))) | → | 2#(2(0(x1))) | (206) |
0#(1(2(2(x1)))) | → | 0#(2(2(0(x1)))) | (85) |
0#(1(2(3(2(x1))))) | → | 2#(2(x1)) | (173) |
0#(1(2(3(2(x1))))) | → | 0#(2(2(x1))) | (149) |
2#(1(0(4(x1)))) | → | 2#(x1) | (186) |
2#(1(0(4(x1)))) | → | 2#(2(x1)) | (112) |
2#(1(0(4(x1)))) | → | 2#(2(2(x1))) | (129) |
2#(1(0(4(x1)))) | → | 0#(2(2(2(x1)))) | (93) |
0#(2(1(2(x1)))) | → | 2#(1(x1)) | (59) |
0#(2(1(2(x1)))) | → | 2#(2(1(x1))) | (110) |
0#(2(1(2(x1)))) | → | 2#(2(2(1(x1)))) | (153) |
0#(2(1(2(x1)))) | → | 0#(2(2(2(1(x1))))) | (151) |
0#(1(2(2(2(x1))))) | → | 2#(1(2(x1))) | (170) |
0#(1(2(2(2(x1))))) | → | 2#(2(1(2(x1)))) | (49) |
0#(1(2(2(2(x1))))) | → | 2#(2(2(1(2(x1))))) | (190) |
0#(1(2(2(2(x1))))) | → | 0#(2(2(2(1(2(x1)))))) | (169) |
0#(2(1(2(2(x1))))) | → | 2#(1(x1)) | (53) |
0#(2(1(2(2(x1))))) | → | 2#(2(1(x1))) | (130) |
0#(2(1(2(2(x1))))) | → | 0#(2(2(1(x1)))) | (116) |
0#(2(1(2(2(x1))))) | → | 2#(0(2(2(1(x1))))) | (215) |
0#(2(1(2(2(x1))))) | → | 0#(2(0(2(2(1(x1)))))) | (126) |
0#(4(1(2(x1)))) | → | 0#(1(x1)) | (121) |
0#(4(1(2(x1)))) | → | 2#(0(1(x1))) | (192) |
0#(4(1(2(x1)))) | → | 0#(2(0(1(x1)))) | (95) |
0#(3(2(2(x1)))) | → | 0#(2(2(x1))) | (203) |
2#(1(0(0(4(x1))))) | → | 2#(x1) | (73) |
2#(1(0(0(4(x1))))) | → | 0#(2(x1)) | (68) |
2#(1(0(0(4(x1))))) | → | 0#(0(2(x1))) | (55) |
0#(2(1(2(x1)))) | → | 0#(1(x1)) | (119) |
0#(2(1(2(x1)))) | → | 2#(0(1(x1))) | (160) |
0#(2(1(2(x1)))) | → | 2#(2(0(1(x1)))) | (50) |
0#(2(1(2(x1)))) | → | 0#(2(2(0(1(x1))))) | (56) |
0#(5(0(1(2(x1))))) | → | 0#(1(5(x1))) | (155) |
0#(5(0(1(2(x1))))) | → | 2#(0(1(5(x1)))) | (181) |
0#(5(0(1(2(x1))))) | → | 0#(2(0(1(5(x1))))) | (124) |
0#(5(0(1(2(x1))))) | → | 0#(0(2(0(1(5(x1)))))) | (135) |
0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
0#(1(2(2(x1)))) | → | 2#(1(0(x1))) | (197) |
0#(1(2(2(x1)))) | → | 2#(2(1(0(x1)))) | (48) |
0#(1(2(2(x1)))) | → | 0#(2(2(1(0(x1))))) | (200) |
The dependency pairs are split into 1 component.
0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
0#(5(0(0(3(x1))))) | → | 2#(0(3(0(5(x1))))) | (72) |
0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
0#(5(4(2(x1)))) | → | 2#(0(5(x1))) | (165) |
0#(5(4(2(x1)))) | → | 2#(2(0(5(x1)))) | (144) |
0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
0#(5(0(5(x1)))) | → | 2#(0(5(5(x1)))) | (107) |
0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
0#(2(3(0(5(x1))))) | → | 0#(5(3(x1))) | (67) |
0#(2(3(0(5(x1))))) | → | 0#(0(5(3(x1)))) | (156) |
0#(2(3(0(5(x1))))) | → | 2#(0(0(5(3(x1))))) | (70) |
0#(2(3(0(5(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (113) |
2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
2#(5(0(0(3(x1))))) | → | 2#(0(0(5(3(x1))))) | (188) |
2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
[0#(x1)] | = | x1 + 0 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | 1 |
[5(x1)] | = | 2 |
[3(x1)] | = | x1 + 1 |
[2#(x1)] | = | 2 |
[0(x1)] | = | 2 |
[5#(x1)] | = | 1 |
[2(x1)] | = | x1 + 0 |
2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
0#(2(3(0(5(x1))))) | → | 0#(5(3(x1))) | (67) |
0#(2(3(0(5(x1))))) | → | 0#(0(5(3(x1)))) | (156) |
0#(2(3(0(5(x1))))) | → | 2#(0(0(5(3(x1))))) | (70) |
0#(2(3(0(5(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (113) |
The dependency pairs are split into 1 component.
0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
0#(5(0(0(3(x1))))) | → | 2#(0(3(0(5(x1))))) | (72) |
0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
0#(5(4(2(x1)))) | → | 2#(0(5(x1))) | (165) |
0#(5(4(2(x1)))) | → | 2#(2(0(5(x1)))) | (144) |
0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
0#(5(0(5(x1)))) | → | 2#(0(5(5(x1)))) | (107) |
0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
2#(5(0(0(3(x1))))) | → | 2#(0(0(5(3(x1))))) | (188) |
2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
[0#(x1)] | = | 100853 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | 56023 |
[5(x1)] | = | 100853 |
[3(x1)] | = | x1 + 44829 |
[2#(x1)] | = | x1 + 0 |
[0(x1)] | = | 100852 |
[5#(x1)] | = | 1 |
[2(x1)] | = | x1 + 0 |
2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
0#(5(0(0(3(x1))))) | → | 2#(0(3(0(5(x1))))) | (72) |
0#(5(4(2(x1)))) | → | 2#(0(5(x1))) | (165) |
0#(5(4(2(x1)))) | → | 2#(2(0(5(x1)))) | (144) |
0#(5(0(5(x1)))) | → | 2#(0(5(5(x1)))) | (107) |
2#(5(0(0(3(x1))))) | → | 2#(0(0(5(3(x1))))) | (188) |
The dependency pairs are split into 1 component.
0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[2#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[5#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
The dependency pairs are split into 1 component.
0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[2#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[5#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
The dependency pairs are split into 1 component.
0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[2#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[5#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
The dependency pairs are split into 1 component.
0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
π(2#) | = | 1 |
prec(0#) | = | 0 | status(0#) | = | [1] | list-extension(0#) | = | Lex | ||
prec(1) | = | 1 | status(1) | = | [] | list-extension(1) | = | Lex | ||
prec(4) | = | 0 | status(4) | = | [] | list-extension(4) | = | Lex | ||
prec(5) | = | 0 | status(5) | = | [1] | list-extension(5) | = | Lex | ||
prec(3) | = | 0 | status(3) | = | [] | list-extension(3) | = | Lex | ||
prec(0) | = | 1 | status(0) | = | [] | list-extension(0) | = | Lex | ||
prec(5#) | = | 0 | status(5#) | = | [] | list-extension(5#) | = | Lex | ||
prec(2) | = | 1 | status(2) | = | [] | list-extension(2) | = | Lex |
[0#(x1)] | = | x1 + 1 |
[1(x1)] | = | 2 |
[4(x1)] | = | x1 + 0 |
[5(x1)] | = | x1 + 1 |
[3(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 0 |
[5#(x1)] | = | 1 |
[2(x1)] | = | x1 + 0 |
2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
The dependency pairs are split into 0 components.