The rewrite relation of the following TRS is considered.
| 0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
| 0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
| 0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
| 0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
| 0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
| 0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
| 0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
| 0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
| 0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
| 0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
| 0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
| 0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
| 0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
| 0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
| 0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
| 2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
| 2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
| 2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
| 0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
| 0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
| 0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
| 0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
| 0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
| 0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
| 0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
| 0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
| 0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
| 0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
| 0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
| 0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
| 0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
| 0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
| 0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
| 0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
| 0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
| 0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
| 0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
| 2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
| 2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
| 2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
| 5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
| 5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
| 5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
| 5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
| 5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
There are 171 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
| 0#(5(4(2(x1)))) | → | 5#(x1) | (142) |
| 0#(1(2(3(x1)))) | → | 0#(2(0(1(3(x1))))) | (140) |
| 0#(2(1(2(2(x1))))) | → | 2#(0(2(2(1(x1))))) | (215) |
| 2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
| 0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
| 0#(5(0(1(2(x1))))) | → | 0#(0(2(0(1(5(x1)))))) | (135) |
| 5#(2(0(1(2(x1))))) | → | 2#(2(x1)) | (131) |
| 0#(2(1(2(2(x1))))) | → | 2#(2(1(x1))) | (130) |
| 2#(1(0(4(x1)))) | → | 2#(2(2(x1))) | (129) |
| 2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
| 0#(2(1(2(2(x1))))) | → | 0#(2(0(2(2(1(x1)))))) | (126) |
| 0#(5(0(1(2(x1))))) | → | 0#(2(0(1(5(x1))))) | (124) |
| 0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
| 0#(4(1(2(x1)))) | → | 0#(1(x1)) | (121) |
| 0#(1(2(2(x1)))) | → | 2#(2(0(x1))) | (206) |
| 5#(0(1(2(2(x1))))) | → | 0#(2(x1)) | (205) |
| 0#(2(1(2(x1)))) | → | 0#(1(x1)) | (119) |
| 0#(3(2(2(x1)))) | → | 0#(2(2(x1))) | (203) |
| 0#(5(0(5(x1)))) | → | 5#(5(x1)) | (118) |
| 0#(0(5(4(2(x1))))) | → | 5#(x1) | (117) |
| 0#(5(0(0(3(x1))))) | → | 0#(3(0(5(x1)))) | (201) |
| 0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
| 0#(2(1(2(2(x1))))) | → | 0#(2(2(1(x1)))) | (116) |
| 0#(1(2(2(x1)))) | → | 0#(2(2(1(0(x1))))) | (200) |
| 0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
| 0#(2(3(0(5(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (113) |
| 2#(1(0(4(x1)))) | → | 2#(2(x1)) | (112) |
| 0#(1(2(2(x1)))) | → | 2#(1(0(x1))) | (197) |
| 0#(4(5(2(3(x1))))) | → | 5#(x1) | (196) |
| 0#(2(1(2(x1)))) | → | 2#(2(1(x1))) | (110) |
| 0#(1(2(3(x1)))) | → | 2#(0(1(3(x1)))) | (108) |
| 0#(5(0(5(x1)))) | → | 2#(0(5(5(x1)))) | (107) |
| 0#(4(1(2(x1)))) | → | 2#(0(1(x1))) | (192) |
| 0#(1(2(2(2(x1))))) | → | 2#(2(2(1(2(x1))))) | (190) |
| 2#(5(0(0(3(x1))))) | → | 2#(0(0(5(3(x1))))) | (188) |
| 2#(1(0(4(x1)))) | → | 2#(x1) | (186) |
| 0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
| 0#(5(0(1(2(x1))))) | → | 2#(0(1(5(x1)))) | (181) |
| 2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
| 0#(4(1(2(x1)))) | → | 0#(2(0(1(x1)))) | (95) |
| 2#(1(0(4(x1)))) | → | 0#(2(2(2(x1)))) | (93) |
| 0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
| 5#(2(0(1(2(x1))))) | → | 0#(2(2(x1))) | (92) |
| 0#(5(2(5(x1)))) | → | 5#(5(x1)) | (177) |
| 5#(0(1(2(2(x1))))) | → | 0#(2(0(2(x1)))) | (89) |
| 0#(5(0(0(3(x1))))) | → | 5#(x1) | (175) |
| 0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
| 0#(1(2(3(2(x1))))) | → | 2#(2(x1)) | (173) |
| 0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
| 2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
| 0#(1(2(2(x1)))) | → | 0#(2(2(0(x1)))) | (85) |
| 0#(1(2(2(2(x1))))) | → | 2#(1(2(x1))) | (170) |
| 0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
| 0#(1(2(2(2(x1))))) | → | 0#(2(2(2(1(2(x1)))))) | (169) |
| 0#(5(0(1(2(x1))))) | → | 5#(x1) | (167) |
| 0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
| 2#(1(0(0(4(x1))))) | → | 2#(x1) | (73) |
| 0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
| 0#(5(0(0(3(x1))))) | → | 2#(0(3(0(5(x1))))) | (72) |
| 0#(5(4(2(x1)))) | → | 2#(0(5(x1))) | (165) |
| 0#(2(3(0(5(x1))))) | → | 2#(0(0(5(3(x1))))) | (70) |
| 0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
| 2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
| 0#(2(3(0(5(x1))))) | → | 0#(5(3(x1))) | (67) |
| 2#(1(0(0(4(x1))))) | → | 0#(2(x1)) | (68) |
| 0#(2(1(2(x1)))) | → | 2#(0(1(x1))) | (160) |
| 2#(5(4(2(x1)))) | → | 5#(x1) | (66) |
| 0#(0(5(4(2(x1))))) | → | 0#(4(0(0(2(5(x1)))))) | (62) |
| 0#(2(3(0(5(x1))))) | → | 0#(0(5(3(x1)))) | (156) |
| 0#(5(0(1(2(x1))))) | → | 0#(1(5(x1))) | (155) |
| 0#(2(1(2(x1)))) | → | 2#(2(2(1(x1)))) | (153) |
| 0#(5(1(4(2(x1))))) | → | 5#(x1) | (60) |
| 0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
| 0#(2(1(2(x1)))) | → | 2#(1(x1)) | (59) |
| 0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
| 0#(2(1(2(x1)))) | → | 0#(2(2(2(1(x1))))) | (151) |
| 0#(2(1(2(x1)))) | → | 0#(2(2(0(1(x1))))) | (56) |
| 0#(1(2(3(2(x1))))) | → | 0#(2(2(x1))) | (149) |
| 2#(1(0(0(4(x1))))) | → | 0#(0(2(x1))) | (55) |
| 0#(1(2(2(x1)))) | → | 2#(0(x1)) | (148) |
| 0#(2(1(2(2(x1))))) | → | 2#(1(x1)) | (53) |
| 2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
| 5#(0(1(2(2(x1))))) | → | 2#(0(2(x1))) | (146) |
| 0#(5(4(2(x1)))) | → | 2#(2(0(5(x1)))) | (144) |
| 0#(1(2(2(2(x1))))) | → | 2#(2(1(2(x1)))) | (49) |
| 0#(2(1(2(x1)))) | → | 2#(2(0(1(x1)))) | (50) |
| 0#(1(2(2(x1)))) | → | 2#(2(1(0(x1)))) | (48) |
| [0#(x1)] | = | x1 + 0 |
| [1(x1)] | = | x1 + 0 |
| [4(x1)] | = | x1 + 0 |
| [5(x1)] | = | x1 + 29535 |
| [3(x1)] | = | x1 + 0 |
| [2#(x1)] | = | x1 + 0 |
| [0(x1)] | = | x1 + 0 |
| [5#(x1)] | = | x1 + 1 |
| [2(x1)] | = | x1 + 0 |
| 2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
| 0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
| 0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
| 0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
| 0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
| 0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
| 0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
| 0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
| 0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
| 2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
| 0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
| 0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
| 0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
| 0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
| 0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
| 0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
| 5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
| 0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
| 0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
| 0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
| 0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
| 2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
| 0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
| 0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
| 0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
| 0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
| 0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
| 5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
| 0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
| 0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
| 0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
| 0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
| 0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
| 2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
| 0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
| 0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
| 5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
| 0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
| 2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
| 2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
| 5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
| 0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
| 0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
| 5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
| 0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
| 0#(5(4(2(x1)))) | → | 5#(x1) | (142) |
| 5#(2(0(1(2(x1))))) | → | 2#(2(x1)) | (131) |
| 5#(0(1(2(2(x1))))) | → | 0#(2(x1)) | (205) |
| 0#(5(0(5(x1)))) | → | 5#(5(x1)) | (118) |
| 0#(0(5(4(2(x1))))) | → | 5#(x1) | (117) |
| 0#(4(5(2(3(x1))))) | → | 5#(x1) | (196) |
| 5#(2(0(1(2(x1))))) | → | 0#(2(2(x1))) | (92) |
| 0#(5(2(5(x1)))) | → | 5#(5(x1)) | (177) |
| 5#(0(1(2(2(x1))))) | → | 0#(2(0(2(x1)))) | (89) |
| 0#(5(0(0(3(x1))))) | → | 5#(x1) | (175) |
| 0#(5(0(1(2(x1))))) | → | 5#(x1) | (167) |
| 2#(5(4(2(x1)))) | → | 5#(x1) | (66) |
| 0#(5(1(4(2(x1))))) | → | 5#(x1) | (60) |
| 5#(0(1(2(2(x1))))) | → | 2#(0(2(x1))) | (146) |
The dependency pairs are split into 1 component.
| 0#(1(2(3(x1)))) | → | 2#(0(1(3(x1)))) | (108) |
| 0#(1(2(3(x1)))) | → | 0#(2(0(1(3(x1))))) | (140) |
| 0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
| 0#(1(2(2(x1)))) | → | 2#(0(x1)) | (148) |
| 0#(1(2(2(x1)))) | → | 2#(2(0(x1))) | (206) |
| 0#(1(2(2(x1)))) | → | 0#(2(2(0(x1)))) | (85) |
| 0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
| 0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
| 0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
| 0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
| 0#(5(0(0(3(x1))))) | → | 0#(3(0(5(x1)))) | (201) |
| 0#(5(0(0(3(x1))))) | → | 2#(0(3(0(5(x1))))) | (72) |
| 0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
| 0#(1(2(3(2(x1))))) | → | 2#(2(x1)) | (173) |
| 0#(1(2(3(2(x1))))) | → | 0#(2(2(x1))) | (149) |
| 2#(1(0(4(x1)))) | → | 2#(x1) | (186) |
| 2#(1(0(4(x1)))) | → | 2#(2(x1)) | (112) |
| 2#(1(0(4(x1)))) | → | 2#(2(2(x1))) | (129) |
| 2#(1(0(4(x1)))) | → | 0#(2(2(2(x1)))) | (93) |
| 0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
| 0#(5(4(2(x1)))) | → | 2#(0(5(x1))) | (165) |
| 0#(5(4(2(x1)))) | → | 2#(2(0(5(x1)))) | (144) |
| 0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
| 0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
| 0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
| 0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
| 0#(0(5(4(2(x1))))) | → | 0#(4(0(0(2(5(x1)))))) | (62) |
| 0#(2(1(2(x1)))) | → | 2#(1(x1)) | (59) |
| 0#(2(1(2(x1)))) | → | 2#(2(1(x1))) | (110) |
| 0#(2(1(2(x1)))) | → | 2#(2(2(1(x1)))) | (153) |
| 0#(2(1(2(x1)))) | → | 0#(2(2(2(1(x1))))) | (151) |
| 2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
| 2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
| 2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
| 0#(1(2(2(2(x1))))) | → | 2#(1(2(x1))) | (170) |
| 0#(1(2(2(2(x1))))) | → | 2#(2(1(2(x1)))) | (49) |
| 0#(1(2(2(2(x1))))) | → | 2#(2(2(1(2(x1))))) | (190) |
| 0#(1(2(2(2(x1))))) | → | 0#(2(2(2(1(2(x1)))))) | (169) |
| 0#(2(1(2(2(x1))))) | → | 2#(1(x1)) | (53) |
| 0#(2(1(2(2(x1))))) | → | 2#(2(1(x1))) | (130) |
| 0#(2(1(2(2(x1))))) | → | 0#(2(2(1(x1)))) | (116) |
| 0#(2(1(2(2(x1))))) | → | 2#(0(2(2(1(x1))))) | (215) |
| 0#(2(1(2(2(x1))))) | → | 0#(2(0(2(2(1(x1)))))) | (126) |
| 0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
| 0#(5(0(5(x1)))) | → | 2#(0(5(5(x1)))) | (107) |
| 0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
| 0#(2(3(0(5(x1))))) | → | 0#(5(3(x1))) | (67) |
| 0#(2(3(0(5(x1))))) | → | 0#(0(5(3(x1)))) | (156) |
| 0#(2(3(0(5(x1))))) | → | 2#(0(0(5(3(x1))))) | (70) |
| 0#(2(3(0(5(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (113) |
| 0#(4(1(2(x1)))) | → | 0#(1(x1)) | (121) |
| 0#(4(1(2(x1)))) | → | 2#(0(1(x1))) | (192) |
| 0#(4(1(2(x1)))) | → | 0#(2(0(1(x1)))) | (95) |
| 0#(3(2(2(x1)))) | → | 0#(2(2(x1))) | (203) |
| 2#(1(0(0(4(x1))))) | → | 2#(x1) | (73) |
| 2#(1(0(0(4(x1))))) | → | 0#(2(x1)) | (68) |
| 2#(1(0(0(4(x1))))) | → | 0#(0(2(x1))) | (55) |
| 0#(2(1(2(x1)))) | → | 0#(1(x1)) | (119) |
| 0#(2(1(2(x1)))) | → | 2#(0(1(x1))) | (160) |
| 0#(2(1(2(x1)))) | → | 2#(2(0(1(x1)))) | (50) |
| 0#(2(1(2(x1)))) | → | 0#(2(2(0(1(x1))))) | (56) |
| 0#(5(0(1(2(x1))))) | → | 0#(1(5(x1))) | (155) |
| 0#(5(0(1(2(x1))))) | → | 2#(0(1(5(x1)))) | (181) |
| 0#(5(0(1(2(x1))))) | → | 0#(2(0(1(5(x1))))) | (124) |
| 0#(5(0(1(2(x1))))) | → | 0#(0(2(0(1(5(x1)))))) | (135) |
| 2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
| 2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
| 2#(5(0(0(3(x1))))) | → | 2#(0(0(5(3(x1))))) | (188) |
| 2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
| 0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
| 0#(1(2(2(x1)))) | → | 2#(1(0(x1))) | (197) |
| 0#(1(2(2(x1)))) | → | 2#(2(1(0(x1)))) | (48) |
| 0#(1(2(2(x1)))) | → | 0#(2(2(1(0(x1))))) | (200) |
| [0#(x1)] | = |
|
||||||||||||
| [1(x1)] | = |
|
||||||||||||
| [4(x1)] | = |
|
||||||||||||
| [5(x1)] | = |
|
||||||||||||
| [3(x1)] | = |
|
||||||||||||
| [2#(x1)] | = |
|
||||||||||||
| [0(x1)] | = |
|
||||||||||||
| [5#(x1)] | = |
|
||||||||||||
| [2(x1)] | = |
|
| 2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
| 0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
| 0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
| 0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
| 0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
| 0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
| 0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
| 0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
| 0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
| 2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
| 0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
| 0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
| 0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
| 0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
| 0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
| 0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
| 5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
| 0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
| 0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
| 0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
| 0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
| 2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
| 0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
| 0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
| 0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
| 0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
| 0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
| 5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
| 0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
| 0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
| 0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
| 0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
| 0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
| 2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
| 0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
| 0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
| 5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
| 0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
| 2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
| 2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
| 5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
| 0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
| 0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
| 5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
| 0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
| 0#(1(2(3(x1)))) | → | 2#(0(1(3(x1)))) | (108) |
| 0#(1(2(3(x1)))) | → | 0#(2(0(1(3(x1))))) | (140) |
| 0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
| 0#(1(2(2(x1)))) | → | 2#(0(x1)) | (148) |
| 0#(1(2(2(x1)))) | → | 2#(2(0(x1))) | (206) |
| 0#(1(2(2(x1)))) | → | 0#(2(2(0(x1)))) | (85) |
| 0#(1(2(3(2(x1))))) | → | 2#(2(x1)) | (173) |
| 0#(1(2(3(2(x1))))) | → | 0#(2(2(x1))) | (149) |
| 2#(1(0(4(x1)))) | → | 2#(x1) | (186) |
| 2#(1(0(4(x1)))) | → | 2#(2(x1)) | (112) |
| 2#(1(0(4(x1)))) | → | 2#(2(2(x1))) | (129) |
| 2#(1(0(4(x1)))) | → | 0#(2(2(2(x1)))) | (93) |
| 0#(2(1(2(x1)))) | → | 2#(1(x1)) | (59) |
| 0#(2(1(2(x1)))) | → | 2#(2(1(x1))) | (110) |
| 0#(2(1(2(x1)))) | → | 2#(2(2(1(x1)))) | (153) |
| 0#(2(1(2(x1)))) | → | 0#(2(2(2(1(x1))))) | (151) |
| 0#(1(2(2(2(x1))))) | → | 2#(1(2(x1))) | (170) |
| 0#(1(2(2(2(x1))))) | → | 2#(2(1(2(x1)))) | (49) |
| 0#(1(2(2(2(x1))))) | → | 2#(2(2(1(2(x1))))) | (190) |
| 0#(1(2(2(2(x1))))) | → | 0#(2(2(2(1(2(x1)))))) | (169) |
| 0#(2(1(2(2(x1))))) | → | 2#(1(x1)) | (53) |
| 0#(2(1(2(2(x1))))) | → | 2#(2(1(x1))) | (130) |
| 0#(2(1(2(2(x1))))) | → | 0#(2(2(1(x1)))) | (116) |
| 0#(2(1(2(2(x1))))) | → | 2#(0(2(2(1(x1))))) | (215) |
| 0#(2(1(2(2(x1))))) | → | 0#(2(0(2(2(1(x1)))))) | (126) |
| 0#(4(1(2(x1)))) | → | 0#(1(x1)) | (121) |
| 0#(4(1(2(x1)))) | → | 2#(0(1(x1))) | (192) |
| 0#(4(1(2(x1)))) | → | 0#(2(0(1(x1)))) | (95) |
| 0#(3(2(2(x1)))) | → | 0#(2(2(x1))) | (203) |
| 2#(1(0(0(4(x1))))) | → | 2#(x1) | (73) |
| 2#(1(0(0(4(x1))))) | → | 0#(2(x1)) | (68) |
| 2#(1(0(0(4(x1))))) | → | 0#(0(2(x1))) | (55) |
| 0#(2(1(2(x1)))) | → | 0#(1(x1)) | (119) |
| 0#(2(1(2(x1)))) | → | 2#(0(1(x1))) | (160) |
| 0#(2(1(2(x1)))) | → | 2#(2(0(1(x1)))) | (50) |
| 0#(2(1(2(x1)))) | → | 0#(2(2(0(1(x1))))) | (56) |
| 0#(5(0(1(2(x1))))) | → | 0#(1(5(x1))) | (155) |
| 0#(5(0(1(2(x1))))) | → | 2#(0(1(5(x1)))) | (181) |
| 0#(5(0(1(2(x1))))) | → | 0#(2(0(1(5(x1))))) | (124) |
| 0#(5(0(1(2(x1))))) | → | 0#(0(2(0(1(5(x1)))))) | (135) |
| 0#(1(2(2(x1)))) | → | 0#(x1) | (86) |
| 0#(1(2(2(x1)))) | → | 2#(1(0(x1))) | (197) |
| 0#(1(2(2(x1)))) | → | 2#(2(1(0(x1)))) | (48) |
| 0#(1(2(2(x1)))) | → | 0#(2(2(1(0(x1))))) | (200) |
The dependency pairs are split into 1 component.
| 0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
| 0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
| 0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
| 0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
| 0#(5(0(0(3(x1))))) | → | 2#(0(3(0(5(x1))))) | (72) |
| 0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
| 0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
| 0#(5(4(2(x1)))) | → | 2#(0(5(x1))) | (165) |
| 0#(5(4(2(x1)))) | → | 2#(2(0(5(x1)))) | (144) |
| 0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
| 0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
| 0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
| 0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
| 2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
| 2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
| 2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
| 0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
| 0#(5(0(5(x1)))) | → | 2#(0(5(5(x1)))) | (107) |
| 0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
| 0#(2(3(0(5(x1))))) | → | 0#(5(3(x1))) | (67) |
| 0#(2(3(0(5(x1))))) | → | 0#(0(5(3(x1)))) | (156) |
| 0#(2(3(0(5(x1))))) | → | 2#(0(0(5(3(x1))))) | (70) |
| 0#(2(3(0(5(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (113) |
| 2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
| 2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
| 2#(5(0(0(3(x1))))) | → | 2#(0(0(5(3(x1))))) | (188) |
| 2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
| [0#(x1)] | = | x1 + 0 |
| [1(x1)] | = | x1 + 0 |
| [4(x1)] | = | 1 |
| [5(x1)] | = | 2 |
| [3(x1)] | = | x1 + 1 |
| [2#(x1)] | = | 2 |
| [0(x1)] | = | 2 |
| [5#(x1)] | = | 1 |
| [2(x1)] | = | x1 + 0 |
| 2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
| 0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
| 0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
| 0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
| 0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
| 0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
| 0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
| 0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
| 0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
| 2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
| 0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
| 0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
| 0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
| 0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
| 0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
| 0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
| 5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
| 0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
| 0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
| 0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
| 0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
| 2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
| 0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
| 0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
| 0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
| 0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
| 0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
| 5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
| 0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
| 0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
| 0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
| 0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
| 0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
| 2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
| 0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
| 0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
| 5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
| 0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
| 2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
| 2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
| 5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
| 0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
| 0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
| 5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
| 0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
| 0#(2(3(0(5(x1))))) | → | 0#(5(3(x1))) | (67) |
| 0#(2(3(0(5(x1))))) | → | 0#(0(5(3(x1)))) | (156) |
| 0#(2(3(0(5(x1))))) | → | 2#(0(0(5(3(x1))))) | (70) |
| 0#(2(3(0(5(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (113) |
The dependency pairs are split into 1 component.
| 0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
| 0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
| 0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
| 0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
| 0#(5(0(0(3(x1))))) | → | 2#(0(3(0(5(x1))))) | (72) |
| 0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
| 0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
| 0#(5(4(2(x1)))) | → | 2#(0(5(x1))) | (165) |
| 0#(5(4(2(x1)))) | → | 2#(2(0(5(x1)))) | (144) |
| 0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
| 0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
| 0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
| 0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
| 2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
| 2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
| 2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
| 0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
| 0#(5(0(5(x1)))) | → | 2#(0(5(5(x1)))) | (107) |
| 0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
| 2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
| 2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
| 2#(5(0(0(3(x1))))) | → | 2#(0(0(5(3(x1))))) | (188) |
| 2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
| [0#(x1)] | = | 100853 |
| [1(x1)] | = | x1 + 0 |
| [4(x1)] | = | 56023 |
| [5(x1)] | = | 100853 |
| [3(x1)] | = | x1 + 44829 |
| [2#(x1)] | = | x1 + 0 |
| [0(x1)] | = | 100852 |
| [5#(x1)] | = | 1 |
| [2(x1)] | = | x1 + 0 |
| 2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
| 0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
| 0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
| 0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
| 0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
| 0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
| 0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
| 0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
| 0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
| 2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
| 0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
| 0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
| 0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
| 0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
| 0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
| 0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
| 5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
| 0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
| 0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
| 0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
| 0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
| 2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
| 0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
| 0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
| 0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
| 0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
| 0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
| 5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
| 0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
| 0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
| 0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
| 0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
| 0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
| 2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
| 0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
| 0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
| 5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
| 0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
| 2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
| 2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
| 5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
| 0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
| 0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
| 5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
| 0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
| 0#(5(0(0(3(x1))))) | → | 2#(0(3(0(5(x1))))) | (72) |
| 0#(5(4(2(x1)))) | → | 2#(0(5(x1))) | (165) |
| 0#(5(4(2(x1)))) | → | 2#(2(0(5(x1)))) | (144) |
| 0#(5(0(5(x1)))) | → | 2#(0(5(5(x1)))) | (107) |
| 2#(5(0(0(3(x1))))) | → | 2#(0(0(5(3(x1))))) | (188) |
The dependency pairs are split into 1 component.
| 0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
| 0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
| 0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
| 0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
| 0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
| 0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
| 0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
| 0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
| 0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
| 0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
| 2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
| 2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
| 2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
| 0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
| 0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
| 2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
| 2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
| 2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
| [0#(x1)] | = |
|
||||||||||||
| [1(x1)] | = |
|
||||||||||||
| [4(x1)] | = |
|
||||||||||||
| [5(x1)] | = |
|
||||||||||||
| [3(x1)] | = |
|
||||||||||||
| [2#(x1)] | = |
|
||||||||||||
| [0(x1)] | = |
|
||||||||||||
| [5#(x1)] | = |
|
||||||||||||
| [2(x1)] | = |
|
| 2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
| 0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
| 0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
| 0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
| 0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
| 0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
| 0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
| 0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
| 0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
| 2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
| 0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
| 0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
| 0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
| 0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
| 0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
| 0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
| 5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
| 0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
| 0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
| 0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
| 0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
| 2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
| 0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
| 0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
| 0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
| 0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
| 0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
| 5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
| 0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
| 0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
| 0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
| 0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
| 0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
| 2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
| 0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
| 0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
| 5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
| 0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
| 2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
| 2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
| 5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
| 0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
| 0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
| 5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
| 0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
| 0#(5(0(0(3(x1))))) | → | 0#(2(0(3(0(5(x1)))))) | (80) |
| 0#(5(0(5(x1)))) | → | 0#(2(0(5(5(x1))))) | (75) |
| 2#(5(0(0(3(x1))))) | → | 0#(2(0(0(5(3(x1)))))) | (138) |
The dependency pairs are split into 1 component.
| 0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
| 0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
| 0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
| 0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
| 0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
| 0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
| 0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
| 0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
| 0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
| 2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
| 2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
| 2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
| 0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
| 2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
| 2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
| [0#(x1)] | = |
|
||||||||||||
| [1(x1)] | = |
|
||||||||||||
| [4(x1)] | = |
|
||||||||||||
| [5(x1)] | = |
|
||||||||||||
| [3(x1)] | = |
|
||||||||||||
| [2#(x1)] | = |
|
||||||||||||
| [0(x1)] | = |
|
||||||||||||
| [5#(x1)] | = |
|
||||||||||||
| [2(x1)] | = |
|
| 2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
| 0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
| 0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
| 0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
| 0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
| 0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
| 0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
| 0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
| 0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
| 2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
| 0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
| 0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
| 0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
| 0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
| 0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
| 0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
| 5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
| 0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
| 0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
| 0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
| 0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
| 2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
| 0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
| 0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
| 0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
| 0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
| 0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
| 5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
| 0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
| 0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
| 0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
| 0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
| 0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
| 2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
| 0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
| 0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
| 5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
| 0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
| 2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
| 2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
| 5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
| 0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
| 0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
| 5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
| 0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
| 0#(5(0(0(3(x1))))) | → | 0#(5(x1)) | (208) |
The dependency pairs are split into 1 component.
| 0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
| 0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
| 0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
| 0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
| 0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
| 0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
| 0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
| 0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
| 2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
| 2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
| 2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
| 0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
| 2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
| 2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
| [0#(x1)] | = |
|
||||||||||||
| [1(x1)] | = |
|
||||||||||||
| [4(x1)] | = |
|
||||||||||||
| [5(x1)] | = |
|
||||||||||||
| [3(x1)] | = |
|
||||||||||||
| [2#(x1)] | = |
|
||||||||||||
| [0(x1)] | = |
|
||||||||||||
| [5#(x1)] | = |
|
||||||||||||
| [2(x1)] | = |
|
| 2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
| 0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
| 0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
| 0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
| 0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
| 0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
| 0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
| 0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
| 0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
| 2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
| 0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
| 0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
| 0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
| 0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
| 0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
| 0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
| 5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
| 0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
| 0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
| 0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
| 0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
| 2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
| 0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
| 0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
| 0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
| 0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
| 0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
| 5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
| 0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
| 0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
| 0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
| 0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
| 0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
| 2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
| 0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
| 0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
| 5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
| 0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
| 2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
| 2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
| 5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
| 0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
| 0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
| 5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
| 0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
| 0#(5(2(5(x1)))) | → | 2#(5(5(x1))) | (58) |
| 0#(5(2(5(x1)))) | → | 2#(2(5(5(x1)))) | (162) |
| 0#(5(2(5(x1)))) | → | 0#(2(2(5(5(x1))))) | (71) |
| 0#(5(4(2(x1)))) | → | 0#(5(x1)) | (115) |
| 0#(5(4(2(x1)))) | → | 0#(2(2(0(5(x1))))) | (184) |
| 0#(0(5(4(2(x1))))) | → | 2#(5(x1)) | (179) |
| 0#(0(5(4(2(x1))))) | → | 0#(2(5(x1))) | (87) |
| 0#(0(5(4(2(x1))))) | → | 0#(0(2(5(x1)))) | (57) |
| 2#(5(4(2(x1)))) | → | 2#(5(x1)) | (97) |
| 2#(5(4(2(x1)))) | → | 2#(2(5(x1))) | (128) |
| 2#(5(4(2(x1)))) | → | 0#(2(2(5(x1)))) | (145) |
| 2#(5(0(0(3(x1))))) | → | 0#(5(3(x1))) | (163) |
| 2#(5(0(0(3(x1))))) | → | 0#(0(5(3(x1)))) | (172) |
The dependency pairs are split into 1 component.
| 0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
| π(2#) | = | 1 |
| prec(0#) | = | 0 | status(0#) | = | [1] | list-extension(0#) | = | Lex | ||
| prec(1) | = | 1 | status(1) | = | [] | list-extension(1) | = | Lex | ||
| prec(4) | = | 0 | status(4) | = | [] | list-extension(4) | = | Lex | ||
| prec(5) | = | 0 | status(5) | = | [1] | list-extension(5) | = | Lex | ||
| prec(3) | = | 0 | status(3) | = | [] | list-extension(3) | = | Lex | ||
| prec(0) | = | 1 | status(0) | = | [] | list-extension(0) | = | Lex | ||
| prec(5#) | = | 0 | status(5#) | = | [] | list-extension(5#) | = | Lex | ||
| prec(2) | = | 1 | status(2) | = | [] | list-extension(2) | = | Lex |
| [0#(x1)] | = | x1 + 1 |
| [1(x1)] | = | 2 |
| [4(x1)] | = | x1 + 0 |
| [5(x1)] | = | x1 + 1 |
| [3(x1)] | = | x1 + 0 |
| [0(x1)] | = | x1 + 0 |
| [5#(x1)] | = | 1 |
| [2(x1)] | = | x1 + 0 |
| 2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
| 0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
| 0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
| 0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
| 0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
| 0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
| 0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
| 0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
| 0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
| 2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
| 0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
| 0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
| 0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
| 0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
| 0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
| 0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
| 5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
| 0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
| 0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
| 0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
| 0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
| 2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
| 0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
| 0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
| 0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
| 0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
| 0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
| 5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
| 0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
| 0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
| 0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
| 0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
| 0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
| 2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
| 0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
| 0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
| 5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
| 0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
| 2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
| 2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
| 5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
| 0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
| 0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
| 5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
| 0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
| 0#(5(0(5(x1)))) | → | 0#(5(5(x1))) | (199) |
The dependency pairs are split into 0 components.