The rewrite relation of the following TRS is considered.
0(0(x1)) | → | 1(0(2(0(2(x1))))) | (1) |
0(0(x1)) | → | 0(2(3(4(0(2(x1)))))) | (2) |
0(3(x1)) | → | 0(2(3(2(x1)))) | (3) |
0(3(x1)) | → | 2(0(2(1(3(x1))))) | (4) |
0(3(x1)) | → | 2(3(0(2(2(x1))))) | (5) |
0(3(x1)) | → | 0(2(2(2(3(2(x1)))))) | (6) |
0(0(0(x1))) | → | 0(2(0(0(x1)))) | (7) |
0(0(4(x1))) | → | 2(4(0(0(3(2(x1)))))) | (8) |
0(0(5(x1))) | → | 0(5(2(0(x1)))) | (9) |
0(1(3(x1))) | → | 3(2(2(1(0(x1))))) | (10) |
0(3(0(x1))) | → | 2(0(2(3(4(0(x1)))))) | (11) |
0(4(3(x1))) | → | 3(0(2(4(x1)))) | (12) |
0(4(3(x1))) | → | 1(0(2(1(3(4(x1)))))) | (13) |
0(4(3(x1))) | → | 2(2(4(3(4(0(x1)))))) | (14) |
0(4(5(x1))) | → | 2(4(0(5(2(5(x1)))))) | (15) |
0(4(5(x1))) | → | 5(3(2(4(4(0(x1)))))) | (16) |
0(5(0(x1))) | → | 0(5(2(4(0(x1))))) | (17) |
0(5(0(x1))) | → | 5(0(2(3(2(0(x1)))))) | (18) |
0(5(3(x1))) | → | 3(2(5(3(2(0(x1)))))) | (19) |
1(0(0(x1))) | → | 1(0(2(5(0(2(x1)))))) | (20) |
1(0(3(x1))) | → | 2(1(3(0(5(2(x1)))))) | (21) |
1(0(4(x1))) | → | 3(0(2(1(4(x1))))) | (22) |
1(0(4(x1))) | → | 2(1(2(1(4(0(x1)))))) | (23) |
3(0(0(x1))) | → | 3(0(2(0(x1)))) | (24) |
3(0(3(x1))) | → | 3(0(2(3(x1)))) | (25) |
3(0(3(x1))) | → | 3(3(2(2(0(x1))))) | (26) |
3(0(4(x1))) | → | 2(2(3(4(0(x1))))) | (27) |
3(0(4(x1))) | → | 2(3(4(2(0(3(x1)))))) | (28) |
3(0(4(x1))) | → | 5(5(2(4(0(3(x1)))))) | (29) |
3(3(4(x1))) | → | 3(2(1(3(2(4(x1)))))) | (30) |
3(5(0(x1))) | → | 3(5(1(0(2(1(x1)))))) | (31) |
4(0(4(x1))) | → | 0(2(4(4(0(x1))))) | (32) |
4(0(4(x1))) | → | 1(4(0(2(4(0(x1)))))) | (33) |
0(0(4(3(x1)))) | → | 3(0(0(2(1(4(x1)))))) | (34) |
0(0(5(3(x1)))) | → | 0(5(2(5(0(3(x1)))))) | (35) |
0(1(0(3(x1)))) | → | 2(1(0(3(0(x1))))) | (36) |
0(1(1(0(x1)))) | → | 2(1(0(0(1(2(x1)))))) | (37) |
0(4(0(0(x1)))) | → | 0(4(0(2(1(0(x1)))))) | (38) |
0(4(1(3(x1)))) | → | 2(1(4(2(0(3(x1)))))) | (39) |
0(4(5(3(x1)))) | → | 4(3(2(5(0(x1))))) | (40) |
0(4(5(3(x1)))) | → | 4(3(5(0(2(4(x1)))))) | (41) |
0(5(0(4(x1)))) | → | 5(0(0(2(4(x1))))) | (42) |
0(5(5(3(x1)))) | → | 2(3(5(5(0(x1))))) | (43) |
1(3(0(4(x1)))) | → | 4(0(1(2(3(x1))))) | (44) |
4(0(3(5(x1)))) | → | 5(2(3(4(2(0(x1)))))) | (45) |
0(0(1(0(4(x1))))) | → | 0(0(0(1(4(2(x1)))))) | (46) |
0(0(5(5(3(x1))))) | → | 0(5(0(3(2(5(x1)))))) | (47) |
3(0(4(3(4(x1))))) | → | 3(0(3(4(2(4(x1)))))) | (48) |
3(3(0(4(5(x1))))) | → | 1(4(5(3(0(3(x1)))))) | (49) |
3(4(2(0(3(x1))))) | → | 2(3(0(2(3(4(x1)))))) | (50) |
There are 160 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
3#(3(0(4(5(x1))))) | → | 3#(x1) | (201) |
3#(0(3(x1))) | → | 0#(x1) | (135) |
3#(0(4(x1))) | → | 3#(4(2(0(3(x1))))) | (200) |
0#(3(0(x1))) | → | 4#(0(x1)) | (132) |
0#(0(5(x1))) | → | 0#(x1) | (133) |
3#(0(4(3(4(x1))))) | → | 3#(0(3(4(2(4(x1)))))) | (131) |
1#(3(0(4(x1)))) | → | 3#(x1) | (199) |
3#(0(4(x1))) | → | 0#(3(x1)) | (129) |
0#(0(4(3(x1)))) | → | 3#(0(0(2(1(4(x1)))))) | (127) |
0#(1(0(3(x1)))) | → | 3#(0(x1)) | (125) |
0#(4(1(3(x1)))) | → | 0#(3(x1)) | (124) |
3#(3(0(4(5(x1))))) | → | 0#(3(x1)) | (122) |
1#(0(4(x1))) | → | 1#(4(0(x1))) | (123) |
3#(0(4(3(4(x1))))) | → | 0#(3(4(2(4(x1))))) | (121) |
0#(0(1(0(4(x1))))) | → | 0#(0(0(1(4(2(x1)))))) | (120) |
0#(4(5(x1))) | → | 0#(x1) | (194) |
0#(4(3(x1))) | → | 4#(3(4(0(x1)))) | (118) |
3#(0(4(x1))) | → | 0#(3(x1)) | (129) |
4#(0(4(x1))) | → | 4#(0(x1)) | (76) |
0#(4(3(x1))) | → | 1#(3(4(x1))) | (117) |
3#(3(0(4(5(x1))))) | → | 3#(0(3(x1))) | (116) |
4#(0(4(x1))) | → | 0#(x1) | (67) |
3#(0(4(x1))) | → | 0#(x1) | (115) |
0#(4(5(x1))) | → | 4#(0(x1)) | (190) |
0#(1(1(0(x1)))) | → | 1#(0(0(1(2(x1))))) | (112) |
0#(4(3(x1))) | → | 3#(4(0(x1))) | (111) |
0#(1(0(3(x1)))) | → | 0#(x1) | (110) |
0#(1(0(3(x1)))) | → | 1#(0(3(0(x1)))) | (182) |
1#(0(4(x1))) | → | 4#(0(x1)) | (105) |
3#(5(0(x1))) | → | 1#(x1) | (181) |
4#(0(4(x1))) | → | 4#(4(0(x1))) | (180) |
0#(0(5(3(x1)))) | → | 0#(3(x1)) | (102) |
3#(0(4(x1))) | → | 3#(x1) | (99) |
3#(0(4(x1))) | → | 3#(x1) | (99) |
0#(3(0(x1))) | → | 3#(4(0(x1))) | (100) |
3#(0(4(3(4(x1))))) | → | 3#(4(2(4(x1)))) | (171) |
0#(4(5(3(x1)))) | → | 4#(3(5(0(2(4(x1)))))) | (172) |
0#(1(0(3(x1)))) | → | 0#(3(0(x1))) | (93) |
3#(0(4(x1))) | → | 4#(0(x1)) | (169) |
1#(0(4(x1))) | → | 1#(4(x1)) | (92) |
4#(0(3(5(x1)))) | → | 3#(4(2(0(x1)))) | (91) |
0#(5(5(3(x1)))) | → | 0#(x1) | (90) |
3#(0(4(x1))) | → | 3#(4(0(x1))) | (88) |
0#(3(x1)) | → | 1#(3(x1)) | (87) |
0#(0(5(5(3(x1))))) | → | 0#(5(0(3(2(5(x1)))))) | (163) |
3#(4(2(0(3(x1))))) | → | 3#(4(x1)) | (162) |
3#(4(2(0(3(x1))))) | → | 4#(x1) | (83) |
4#(0(3(5(x1)))) | → | 0#(x1) | (84) |
1#(0(4(x1))) | → | 0#(x1) | (80) |
4#(0(4(x1))) | → | 4#(0(x1)) | (76) |
0#(0(4(x1))) | → | 4#(0(0(3(2(x1))))) | (73) |
0#(4(5(x1))) | → | 4#(4(0(x1))) | (74) |
0#(5(3(x1))) | → | 0#(x1) | (158) |
0#(4(3(x1))) | → | 4#(0(x1)) | (72) |
0#(4(5(3(x1)))) | → | 4#(x1) | (157) |
0#(0(4(x1))) | → | 0#(0(3(2(x1)))) | (155) |
0#(0(5(5(3(x1))))) | → | 0#(3(2(5(x1)))) | (156) |
0#(4(3(x1))) | → | 4#(x1) | (70) |
0#(1(3(x1))) | → | 1#(0(x1)) | (68) |
0#(5(0(x1))) | → | 4#(0(x1)) | (151) |
4#(0(4(x1))) | → | 0#(x1) | (67) |
0#(0(4(3(x1)))) | → | 1#(4(x1)) | (65) |
0#(4(3(x1))) | → | 0#(x1) | (150) |
0#(4(0(0(x1)))) | → | 1#(0(x1)) | (64) |
0#(4(3(x1))) | → | 4#(x1) | (70) |
0#(0(4(x1))) | → | 0#(3(2(x1))) | (61) |
0#(0(4(3(x1)))) | → | 4#(x1) | (60) |
0#(1(3(x1))) | → | 0#(x1) | (146) |
0#(4(5(3(x1)))) | → | 0#(x1) | (59) |
0#(4(3(x1))) | → | 3#(4(x1)) | (58) |
3#(0(4(x1))) | → | 4#(0(3(x1))) | (141) |
0#(4(5(3(x1)))) | → | 3#(5(0(2(4(x1))))) | (138) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
x1 +
|
||||||||||||
[4(x1)] | = |
x1 +
|
||||||||||||
[5(x1)] | = |
x1 +
|
||||||||||||
[3(x1)] | = |
x1 +
|
||||||||||||
[4#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[3#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
||||||||||||
[1#(x1)] | = |
|
0(5(0(x1))) | → | 5(0(2(3(2(0(x1)))))) | (18) |
3(4(2(0(3(x1))))) | → | 2(3(0(2(3(4(x1)))))) | (50) |
0(3(x1)) | → | 2(0(2(1(3(x1))))) | (4) |
0(4(5(x1))) | → | 2(4(0(5(2(5(x1)))))) | (15) |
0(0(4(x1))) | → | 2(4(0(0(3(2(x1)))))) | (8) |
0(0(x1)) | → | 1(0(2(0(2(x1))))) | (1) |
0(3(x1)) | → | 0(2(3(2(x1)))) | (3) |
0(4(5(x1))) | → | 5(3(2(4(4(0(x1)))))) | (16) |
1(0(3(x1))) | → | 2(1(3(0(5(2(x1)))))) | (21) |
0(1(0(3(x1)))) | → | 2(1(0(3(0(x1))))) | (36) |
3(0(3(x1))) | → | 3(3(2(2(0(x1))))) | (26) |
0(5(3(x1))) | → | 3(2(5(3(2(0(x1)))))) | (19) |
4(0(4(x1))) | → | 0(2(4(4(0(x1))))) | (32) |
0(5(0(x1))) | → | 0(5(2(4(0(x1))))) | (17) |
3(0(4(x1))) | → | 2(2(3(4(0(x1))))) | (27) |
0(0(4(3(x1)))) | → | 3(0(0(2(1(4(x1)))))) | (34) |
1(0(4(x1))) | → | 3(0(2(1(4(x1))))) | (22) |
3(0(4(x1))) | → | 2(3(4(2(0(3(x1)))))) | (28) |
1(3(0(4(x1)))) | → | 4(0(1(2(3(x1))))) | (44) |
0(3(x1)) | → | 2(3(0(2(2(x1))))) | (5) |
4(0(4(x1))) | → | 1(4(0(2(4(0(x1)))))) | (33) |
0(1(3(x1))) | → | 3(2(2(1(0(x1))))) | (10) |
0(4(1(3(x1)))) | → | 2(1(4(2(0(3(x1)))))) | (39) |
0(0(0(x1))) | → | 0(2(0(0(x1)))) | (7) |
1(0(0(x1))) | → | 1(0(2(5(0(2(x1)))))) | (20) |
3(0(3(x1))) | → | 3(0(2(3(x1)))) | (25) |
3(3(0(4(5(x1))))) | → | 1(4(5(3(0(3(x1)))))) | (49) |
3(3(4(x1))) | → | 3(2(1(3(2(4(x1)))))) | (30) |
0(4(3(x1))) | → | 2(2(4(3(4(0(x1)))))) | (14) |
3(5(0(x1))) | → | 3(5(1(0(2(1(x1)))))) | (31) |
0(4(3(x1))) | → | 3(0(2(4(x1)))) | (12) |
4(0(3(5(x1)))) | → | 5(2(3(4(2(0(x1)))))) | (45) |
1(0(4(x1))) | → | 2(1(2(1(4(0(x1)))))) | (23) |
3(0(0(x1))) | → | 3(0(2(0(x1)))) | (24) |
0(3(0(x1))) | → | 2(0(2(3(4(0(x1)))))) | (11) |
0(0(5(x1))) | → | 0(5(2(0(x1)))) | (9) |
0(4(3(x1))) | → | 1(0(2(1(3(4(x1)))))) | (13) |
0(4(5(3(x1)))) | → | 4(3(2(5(0(x1))))) | (40) |
0(3(x1)) | → | 0(2(2(2(3(2(x1)))))) | (6) |
0(4(0(0(x1)))) | → | 0(4(0(2(1(0(x1)))))) | (38) |
3(0(4(3(4(x1))))) | → | 3(0(3(4(2(4(x1)))))) | (48) |
0(0(5(5(3(x1))))) | → | 0(5(0(3(2(5(x1)))))) | (47) |
0(1(1(0(x1)))) | → | 2(1(0(0(1(2(x1)))))) | (37) |
0(4(5(3(x1)))) | → | 4(3(5(0(2(4(x1)))))) | (41) |
0(5(0(4(x1)))) | → | 5(0(0(2(4(x1))))) | (42) |
0(0(1(0(4(x1))))) | → | 0(0(0(1(4(2(x1)))))) | (46) |
0(0(5(3(x1)))) | → | 0(5(2(5(0(3(x1)))))) | (35) |
3(0(4(x1))) | → | 5(5(2(4(0(3(x1)))))) | (29) |
0(5(5(3(x1)))) | → | 2(3(5(5(0(x1))))) | (43) |
0(0(x1)) | → | 0(2(3(4(0(2(x1)))))) | (2) |
3#(3(0(4(5(x1))))) | → | 3#(x1) | (201) |
3#(0(3(x1))) | → | 0#(x1) | (135) |
3#(0(4(x1))) | → | 3#(4(2(0(3(x1))))) | (200) |
0#(3(0(x1))) | → | 4#(0(x1)) | (132) |
0#(0(5(x1))) | → | 0#(x1) | (133) |
3#(0(4(3(4(x1))))) | → | 3#(0(3(4(2(4(x1)))))) | (131) |
1#(3(0(4(x1)))) | → | 3#(x1) | (199) |
3#(0(4(x1))) | → | 0#(3(x1)) | (129) |
0#(0(4(3(x1)))) | → | 3#(0(0(2(1(4(x1)))))) | (127) |
0#(1(0(3(x1)))) | → | 3#(0(x1)) | (125) |
0#(4(1(3(x1)))) | → | 0#(3(x1)) | (124) |
3#(3(0(4(5(x1))))) | → | 0#(3(x1)) | (122) |
3#(0(4(3(4(x1))))) | → | 0#(3(4(2(4(x1))))) | (121) |
0#(4(5(x1))) | → | 0#(x1) | (194) |
0#(4(3(x1))) | → | 4#(3(4(0(x1)))) | (118) |
3#(0(4(x1))) | → | 0#(3(x1)) | (129) |
4#(0(4(x1))) | → | 4#(0(x1)) | (76) |
0#(4(3(x1))) | → | 1#(3(4(x1))) | (117) |
3#(3(0(4(5(x1))))) | → | 3#(0(3(x1))) | (116) |
4#(0(4(x1))) | → | 0#(x1) | (67) |
3#(0(4(x1))) | → | 0#(x1) | (115) |
0#(4(5(x1))) | → | 4#(0(x1)) | (190) |
0#(1(1(0(x1)))) | → | 1#(0(0(1(2(x1))))) | (112) |
0#(4(3(x1))) | → | 3#(4(0(x1))) | (111) |
0#(1(0(3(x1)))) | → | 0#(x1) | (110) |
0#(1(0(3(x1)))) | → | 1#(0(3(0(x1)))) | (182) |
1#(0(4(x1))) | → | 4#(0(x1)) | (105) |
3#(5(0(x1))) | → | 1#(x1) | (181) |
0#(0(5(3(x1)))) | → | 0#(3(x1)) | (102) |
3#(0(4(x1))) | → | 3#(x1) | (99) |
3#(0(4(x1))) | → | 3#(x1) | (99) |
0#(3(0(x1))) | → | 3#(4(0(x1))) | (100) |
3#(0(4(3(4(x1))))) | → | 3#(4(2(4(x1)))) | (171) |
0#(4(5(3(x1)))) | → | 4#(3(5(0(2(4(x1)))))) | (172) |
0#(1(0(3(x1)))) | → | 0#(3(0(x1))) | (93) |
3#(0(4(x1))) | → | 4#(0(x1)) | (169) |
1#(0(4(x1))) | → | 1#(4(x1)) | (92) |
4#(0(3(5(x1)))) | → | 3#(4(2(0(x1)))) | (91) |
0#(5(5(3(x1)))) | → | 0#(x1) | (90) |
0#(3(x1)) | → | 1#(3(x1)) | (87) |
0#(0(5(5(3(x1))))) | → | 0#(5(0(3(2(5(x1)))))) | (163) |
3#(4(2(0(3(x1))))) | → | 3#(4(x1)) | (162) |
3#(4(2(0(3(x1))))) | → | 4#(x1) | (83) |
4#(0(3(5(x1)))) | → | 0#(x1) | (84) |
1#(0(4(x1))) | → | 0#(x1) | (80) |
4#(0(4(x1))) | → | 4#(0(x1)) | (76) |
0#(0(4(x1))) | → | 4#(0(0(3(2(x1))))) | (73) |
0#(4(5(x1))) | → | 4#(4(0(x1))) | (74) |
0#(5(3(x1))) | → | 0#(x1) | (158) |
0#(4(3(x1))) | → | 4#(0(x1)) | (72) |
0#(4(5(3(x1)))) | → | 4#(x1) | (157) |
0#(0(4(x1))) | → | 0#(0(3(2(x1)))) | (155) |
0#(0(5(5(3(x1))))) | → | 0#(3(2(5(x1)))) | (156) |
0#(4(3(x1))) | → | 4#(x1) | (70) |
0#(1(3(x1))) | → | 1#(0(x1)) | (68) |
0#(5(0(x1))) | → | 4#(0(x1)) | (151) |
4#(0(4(x1))) | → | 0#(x1) | (67) |
0#(0(4(3(x1)))) | → | 1#(4(x1)) | (65) |
0#(4(3(x1))) | → | 0#(x1) | (150) |
0#(4(0(0(x1)))) | → | 1#(0(x1)) | (64) |
0#(4(3(x1))) | → | 4#(x1) | (70) |
0#(0(4(x1))) | → | 0#(3(2(x1))) | (61) |
0#(0(4(3(x1)))) | → | 4#(x1) | (60) |
0#(1(3(x1))) | → | 0#(x1) | (146) |
0#(4(5(3(x1)))) | → | 0#(x1) | (59) |
0#(4(3(x1))) | → | 3#(4(x1)) | (58) |
3#(0(4(x1))) | → | 4#(0(3(x1))) | (141) |
0#(4(5(3(x1)))) | → | 3#(5(0(2(4(x1))))) | (138) |
The dependency pairs are split into 4 components.
4#(0(4(x1))) | → | 4#(4(0(x1))) | (180) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | 1 |
[5(x1)] | = | 1 |
[3(x1)] | = | 1 |
[4#(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 1 |
[3#(x1)] | = | 0 |
[2(x1)] | = | 0 |
[1#(x1)] | = | 0 |
0(5(0(x1))) | → | 5(0(2(3(2(0(x1)))))) | (18) |
3(4(2(0(3(x1))))) | → | 2(3(0(2(3(4(x1)))))) | (50) |
0(3(x1)) | → | 2(0(2(1(3(x1))))) | (4) |
0(4(5(x1))) | → | 2(4(0(5(2(5(x1)))))) | (15) |
0(0(4(x1))) | → | 2(4(0(0(3(2(x1)))))) | (8) |
0(0(x1)) | → | 1(0(2(0(2(x1))))) | (1) |
0(3(x1)) | → | 0(2(3(2(x1)))) | (3) |
0(4(5(x1))) | → | 5(3(2(4(4(0(x1)))))) | (16) |
1(0(3(x1))) | → | 2(1(3(0(5(2(x1)))))) | (21) |
0(1(0(3(x1)))) | → | 2(1(0(3(0(x1))))) | (36) |
3(0(3(x1))) | → | 3(3(2(2(0(x1))))) | (26) |
0(5(3(x1))) | → | 3(2(5(3(2(0(x1)))))) | (19) |
4(0(4(x1))) | → | 0(2(4(4(0(x1))))) | (32) |
0(5(0(x1))) | → | 0(5(2(4(0(x1))))) | (17) |
3(0(4(x1))) | → | 2(2(3(4(0(x1))))) | (27) |
0(0(4(3(x1)))) | → | 3(0(0(2(1(4(x1)))))) | (34) |
1(0(4(x1))) | → | 3(0(2(1(4(x1))))) | (22) |
3(0(4(x1))) | → | 2(3(4(2(0(3(x1)))))) | (28) |
1(3(0(4(x1)))) | → | 4(0(1(2(3(x1))))) | (44) |
0(3(x1)) | → | 2(3(0(2(2(x1))))) | (5) |
4(0(4(x1))) | → | 1(4(0(2(4(0(x1)))))) | (33) |
0(1(3(x1))) | → | 3(2(2(1(0(x1))))) | (10) |
0(4(1(3(x1)))) | → | 2(1(4(2(0(3(x1)))))) | (39) |
0(0(0(x1))) | → | 0(2(0(0(x1)))) | (7) |
1(0(0(x1))) | → | 1(0(2(5(0(2(x1)))))) | (20) |
3(0(3(x1))) | → | 3(0(2(3(x1)))) | (25) |
3(3(0(4(5(x1))))) | → | 1(4(5(3(0(3(x1)))))) | (49) |
3(3(4(x1))) | → | 3(2(1(3(2(4(x1)))))) | (30) |
0(4(3(x1))) | → | 2(2(4(3(4(0(x1)))))) | (14) |
3(5(0(x1))) | → | 3(5(1(0(2(1(x1)))))) | (31) |
0(4(3(x1))) | → | 3(0(2(4(x1)))) | (12) |
4(0(3(5(x1)))) | → | 5(2(3(4(2(0(x1)))))) | (45) |
1(0(4(x1))) | → | 2(1(2(1(4(0(x1)))))) | (23) |
3(0(0(x1))) | → | 3(0(2(0(x1)))) | (24) |
0(3(0(x1))) | → | 2(0(2(3(4(0(x1)))))) | (11) |
0(0(5(x1))) | → | 0(5(2(0(x1)))) | (9) |
0(4(3(x1))) | → | 1(0(2(1(3(4(x1)))))) | (13) |
0(4(5(3(x1)))) | → | 4(3(2(5(0(x1))))) | (40) |
0(3(x1)) | → | 0(2(2(2(3(2(x1)))))) | (6) |
0(4(0(0(x1)))) | → | 0(4(0(2(1(0(x1)))))) | (38) |
3(0(4(3(4(x1))))) | → | 3(0(3(4(2(4(x1)))))) | (48) |
0(0(5(5(3(x1))))) | → | 0(5(0(3(2(5(x1)))))) | (47) |
0(1(1(0(x1)))) | → | 2(1(0(0(1(2(x1)))))) | (37) |
0(4(5(3(x1)))) | → | 4(3(5(0(2(4(x1)))))) | (41) |
0(5(0(4(x1)))) | → | 5(0(0(2(4(x1))))) | (42) |
0(0(1(0(4(x1))))) | → | 0(0(0(1(4(2(x1)))))) | (46) |
0(0(5(3(x1)))) | → | 0(5(2(5(0(3(x1)))))) | (35) |
3(0(4(x1))) | → | 5(5(2(4(0(3(x1)))))) | (29) |
0(5(5(3(x1)))) | → | 2(3(5(5(0(x1))))) | (43) |
0(0(x1)) | → | 0(2(3(4(0(2(x1)))))) | (2) |
4#(0(4(x1))) | → | 4#(4(0(x1))) | (180) |
The dependency pairs are split into 0 components.
3#(0(4(x1))) | → | 3#(4(0(x1))) | (88) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | 1 |
[5(x1)] | = | 1 |
[3(x1)] | = | 1 |
[4#(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 1 |
[3#(x1)] | = | x1 + 0 |
[2(x1)] | = | 0 |
[1#(x1)] | = | 0 |
0(5(0(x1))) | → | 5(0(2(3(2(0(x1)))))) | (18) |
3(4(2(0(3(x1))))) | → | 2(3(0(2(3(4(x1)))))) | (50) |
0(3(x1)) | → | 2(0(2(1(3(x1))))) | (4) |
0(4(5(x1))) | → | 2(4(0(5(2(5(x1)))))) | (15) |
0(0(4(x1))) | → | 2(4(0(0(3(2(x1)))))) | (8) |
0(0(x1)) | → | 1(0(2(0(2(x1))))) | (1) |
0(3(x1)) | → | 0(2(3(2(x1)))) | (3) |
0(4(5(x1))) | → | 5(3(2(4(4(0(x1)))))) | (16) |
1(0(3(x1))) | → | 2(1(3(0(5(2(x1)))))) | (21) |
0(1(0(3(x1)))) | → | 2(1(0(3(0(x1))))) | (36) |
3(0(3(x1))) | → | 3(3(2(2(0(x1))))) | (26) |
0(5(3(x1))) | → | 3(2(5(3(2(0(x1)))))) | (19) |
4(0(4(x1))) | → | 0(2(4(4(0(x1))))) | (32) |
0(5(0(x1))) | → | 0(5(2(4(0(x1))))) | (17) |
3(0(4(x1))) | → | 2(2(3(4(0(x1))))) | (27) |
0(0(4(3(x1)))) | → | 3(0(0(2(1(4(x1)))))) | (34) |
1(0(4(x1))) | → | 3(0(2(1(4(x1))))) | (22) |
3(0(4(x1))) | → | 2(3(4(2(0(3(x1)))))) | (28) |
1(3(0(4(x1)))) | → | 4(0(1(2(3(x1))))) | (44) |
0(3(x1)) | → | 2(3(0(2(2(x1))))) | (5) |
4(0(4(x1))) | → | 1(4(0(2(4(0(x1)))))) | (33) |
0(1(3(x1))) | → | 3(2(2(1(0(x1))))) | (10) |
0(4(1(3(x1)))) | → | 2(1(4(2(0(3(x1)))))) | (39) |
0(0(0(x1))) | → | 0(2(0(0(x1)))) | (7) |
1(0(0(x1))) | → | 1(0(2(5(0(2(x1)))))) | (20) |
3(0(3(x1))) | → | 3(0(2(3(x1)))) | (25) |
3(3(0(4(5(x1))))) | → | 1(4(5(3(0(3(x1)))))) | (49) |
3(3(4(x1))) | → | 3(2(1(3(2(4(x1)))))) | (30) |
0(4(3(x1))) | → | 2(2(4(3(4(0(x1)))))) | (14) |
3(5(0(x1))) | → | 3(5(1(0(2(1(x1)))))) | (31) |
0(4(3(x1))) | → | 3(0(2(4(x1)))) | (12) |
4(0(3(5(x1)))) | → | 5(2(3(4(2(0(x1)))))) | (45) |
1(0(4(x1))) | → | 2(1(2(1(4(0(x1)))))) | (23) |
3(0(0(x1))) | → | 3(0(2(0(x1)))) | (24) |
0(3(0(x1))) | → | 2(0(2(3(4(0(x1)))))) | (11) |
0(0(5(x1))) | → | 0(5(2(0(x1)))) | (9) |
0(4(3(x1))) | → | 1(0(2(1(3(4(x1)))))) | (13) |
0(4(5(3(x1)))) | → | 4(3(2(5(0(x1))))) | (40) |
0(3(x1)) | → | 0(2(2(2(3(2(x1)))))) | (6) |
0(4(0(0(x1)))) | → | 0(4(0(2(1(0(x1)))))) | (38) |
3(0(4(3(4(x1))))) | → | 3(0(3(4(2(4(x1)))))) | (48) |
0(0(5(5(3(x1))))) | → | 0(5(0(3(2(5(x1)))))) | (47) |
0(1(1(0(x1)))) | → | 2(1(0(0(1(2(x1)))))) | (37) |
0(4(5(3(x1)))) | → | 4(3(5(0(2(4(x1)))))) | (41) |
0(5(0(4(x1)))) | → | 5(0(0(2(4(x1))))) | (42) |
0(0(1(0(4(x1))))) | → | 0(0(0(1(4(2(x1)))))) | (46) |
0(0(5(3(x1)))) | → | 0(5(2(5(0(3(x1)))))) | (35) |
3(0(4(x1))) | → | 5(5(2(4(0(3(x1)))))) | (29) |
0(5(5(3(x1)))) | → | 2(3(5(5(0(x1))))) | (43) |
0(0(x1)) | → | 0(2(3(4(0(2(x1)))))) | (2) |
3#(0(4(x1))) | → | 3#(4(0(x1))) | (88) |
The dependency pairs are split into 0 components.
1#(0(4(x1))) | → | 1#(4(0(x1))) | (123) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | 1 |
[5(x1)] | = | 1 |
[3(x1)] | = | 1 |
[4#(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 1 |
[3#(x1)] | = | x1 + 0 |
[2(x1)] | = | 0 |
[1#(x1)] | = | x1 + 0 |
0(5(0(x1))) | → | 5(0(2(3(2(0(x1)))))) | (18) |
3(4(2(0(3(x1))))) | → | 2(3(0(2(3(4(x1)))))) | (50) |
0(3(x1)) | → | 2(0(2(1(3(x1))))) | (4) |
0(4(5(x1))) | → | 2(4(0(5(2(5(x1)))))) | (15) |
0(0(4(x1))) | → | 2(4(0(0(3(2(x1)))))) | (8) |
0(0(x1)) | → | 1(0(2(0(2(x1))))) | (1) |
0(3(x1)) | → | 0(2(3(2(x1)))) | (3) |
0(4(5(x1))) | → | 5(3(2(4(4(0(x1)))))) | (16) |
1(0(3(x1))) | → | 2(1(3(0(5(2(x1)))))) | (21) |
0(1(0(3(x1)))) | → | 2(1(0(3(0(x1))))) | (36) |
3(0(3(x1))) | → | 3(3(2(2(0(x1))))) | (26) |
0(5(3(x1))) | → | 3(2(5(3(2(0(x1)))))) | (19) |
4(0(4(x1))) | → | 0(2(4(4(0(x1))))) | (32) |
0(5(0(x1))) | → | 0(5(2(4(0(x1))))) | (17) |
3(0(4(x1))) | → | 2(2(3(4(0(x1))))) | (27) |
0(0(4(3(x1)))) | → | 3(0(0(2(1(4(x1)))))) | (34) |
1(0(4(x1))) | → | 3(0(2(1(4(x1))))) | (22) |
3(0(4(x1))) | → | 2(3(4(2(0(3(x1)))))) | (28) |
1(3(0(4(x1)))) | → | 4(0(1(2(3(x1))))) | (44) |
0(3(x1)) | → | 2(3(0(2(2(x1))))) | (5) |
4(0(4(x1))) | → | 1(4(0(2(4(0(x1)))))) | (33) |
0(1(3(x1))) | → | 3(2(2(1(0(x1))))) | (10) |
0(4(1(3(x1)))) | → | 2(1(4(2(0(3(x1)))))) | (39) |
0(0(0(x1))) | → | 0(2(0(0(x1)))) | (7) |
1(0(0(x1))) | → | 1(0(2(5(0(2(x1)))))) | (20) |
3(0(3(x1))) | → | 3(0(2(3(x1)))) | (25) |
3(3(0(4(5(x1))))) | → | 1(4(5(3(0(3(x1)))))) | (49) |
3(3(4(x1))) | → | 3(2(1(3(2(4(x1)))))) | (30) |
0(4(3(x1))) | → | 2(2(4(3(4(0(x1)))))) | (14) |
3(5(0(x1))) | → | 3(5(1(0(2(1(x1)))))) | (31) |
0(4(3(x1))) | → | 3(0(2(4(x1)))) | (12) |
4(0(3(5(x1)))) | → | 5(2(3(4(2(0(x1)))))) | (45) |
1(0(4(x1))) | → | 2(1(2(1(4(0(x1)))))) | (23) |
3(0(0(x1))) | → | 3(0(2(0(x1)))) | (24) |
0(3(0(x1))) | → | 2(0(2(3(4(0(x1)))))) | (11) |
0(0(5(x1))) | → | 0(5(2(0(x1)))) | (9) |
0(4(3(x1))) | → | 1(0(2(1(3(4(x1)))))) | (13) |
0(4(5(3(x1)))) | → | 4(3(2(5(0(x1))))) | (40) |
0(3(x1)) | → | 0(2(2(2(3(2(x1)))))) | (6) |
0(4(0(0(x1)))) | → | 0(4(0(2(1(0(x1)))))) | (38) |
3(0(4(3(4(x1))))) | → | 3(0(3(4(2(4(x1)))))) | (48) |
0(0(5(5(3(x1))))) | → | 0(5(0(3(2(5(x1)))))) | (47) |
0(1(1(0(x1)))) | → | 2(1(0(0(1(2(x1)))))) | (37) |
0(4(5(3(x1)))) | → | 4(3(5(0(2(4(x1)))))) | (41) |
0(5(0(4(x1)))) | → | 5(0(0(2(4(x1))))) | (42) |
0(0(1(0(4(x1))))) | → | 0(0(0(1(4(2(x1)))))) | (46) |
0(0(5(3(x1)))) | → | 0(5(2(5(0(3(x1)))))) | (35) |
3(0(4(x1))) | → | 5(5(2(4(0(3(x1)))))) | (29) |
0(5(5(3(x1)))) | → | 2(3(5(5(0(x1))))) | (43) |
0(0(x1)) | → | 0(2(3(4(0(2(x1)))))) | (2) |
1#(0(4(x1))) | → | 1#(4(0(x1))) | (123) |
The dependency pairs are split into 0 components.
0#(0(1(0(4(x1))))) | → | 0#(0(0(1(4(2(x1)))))) | (120) |
π(0#) | = | 1 |
π(3#) | = | 1 |
prec(1) | = | 2 | status(1) | = | [] | list-extension(1) | = | Lex | ||
prec(4) | = | 2 | status(4) | = | [] | list-extension(4) | = | Lex | ||
prec(5) | = | 0 | status(5) | = | [1] | list-extension(5) | = | Lex | ||
prec(3) | = | 1 | status(3) | = | [] | list-extension(3) | = | Lex | ||
prec(4#) | = | 1 | status(4#) | = | [] | list-extension(4#) | = | Lex | ||
prec(0) | = | 1 | status(0) | = | [1] | list-extension(0) | = | Lex | ||
prec(2) | = | 1 | status(2) | = | [] | list-extension(2) | = | Lex | ||
prec(1#) | = | 2 | status(1#) | = | [] | list-extension(1#) | = | Lex |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | 3 |
[5(x1)] | = | x1 + 2 |
[3(x1)] | = | x1 + 0 |
[4#(x1)] | = | 1 |
[0(x1)] | = | x1 + 1 |
[2(x1)] | = | 0 |
[1#(x1)] | = | 1 |
0(5(0(x1))) | → | 5(0(2(3(2(0(x1)))))) | (18) |
3(4(2(0(3(x1))))) | → | 2(3(0(2(3(4(x1)))))) | (50) |
0(3(x1)) | → | 2(0(2(1(3(x1))))) | (4) |
0(4(5(x1))) | → | 2(4(0(5(2(5(x1)))))) | (15) |
0(0(4(x1))) | → | 2(4(0(0(3(2(x1)))))) | (8) |
0(0(x1)) | → | 1(0(2(0(2(x1))))) | (1) |
0(3(x1)) | → | 0(2(3(2(x1)))) | (3) |
0(4(5(x1))) | → | 5(3(2(4(4(0(x1)))))) | (16) |
1(0(3(x1))) | → | 2(1(3(0(5(2(x1)))))) | (21) |
0(1(0(3(x1)))) | → | 2(1(0(3(0(x1))))) | (36) |
3(0(3(x1))) | → | 3(3(2(2(0(x1))))) | (26) |
0(5(3(x1))) | → | 3(2(5(3(2(0(x1)))))) | (19) |
4(0(4(x1))) | → | 0(2(4(4(0(x1))))) | (32) |
0(5(0(x1))) | → | 0(5(2(4(0(x1))))) | (17) |
3(0(4(x1))) | → | 2(2(3(4(0(x1))))) | (27) |
0(0(4(3(x1)))) | → | 3(0(0(2(1(4(x1)))))) | (34) |
1(0(4(x1))) | → | 3(0(2(1(4(x1))))) | (22) |
3(0(4(x1))) | → | 2(3(4(2(0(3(x1)))))) | (28) |
1(3(0(4(x1)))) | → | 4(0(1(2(3(x1))))) | (44) |
0(3(x1)) | → | 2(3(0(2(2(x1))))) | (5) |
4(0(4(x1))) | → | 1(4(0(2(4(0(x1)))))) | (33) |
0(1(3(x1))) | → | 3(2(2(1(0(x1))))) | (10) |
0(4(1(3(x1)))) | → | 2(1(4(2(0(3(x1)))))) | (39) |
0(0(0(x1))) | → | 0(2(0(0(x1)))) | (7) |
1(0(0(x1))) | → | 1(0(2(5(0(2(x1)))))) | (20) |
3(0(3(x1))) | → | 3(0(2(3(x1)))) | (25) |
3(3(0(4(5(x1))))) | → | 1(4(5(3(0(3(x1)))))) | (49) |
3(3(4(x1))) | → | 3(2(1(3(2(4(x1)))))) | (30) |
0(4(3(x1))) | → | 2(2(4(3(4(0(x1)))))) | (14) |
3(5(0(x1))) | → | 3(5(1(0(2(1(x1)))))) | (31) |
0(4(3(x1))) | → | 3(0(2(4(x1)))) | (12) |
4(0(3(5(x1)))) | → | 5(2(3(4(2(0(x1)))))) | (45) |
1(0(4(x1))) | → | 2(1(2(1(4(0(x1)))))) | (23) |
3(0(0(x1))) | → | 3(0(2(0(x1)))) | (24) |
0(3(0(x1))) | → | 2(0(2(3(4(0(x1)))))) | (11) |
0(0(5(x1))) | → | 0(5(2(0(x1)))) | (9) |
0(4(3(x1))) | → | 1(0(2(1(3(4(x1)))))) | (13) |
0(4(5(3(x1)))) | → | 4(3(2(5(0(x1))))) | (40) |
0(3(x1)) | → | 0(2(2(2(3(2(x1)))))) | (6) |
0(4(0(0(x1)))) | → | 0(4(0(2(1(0(x1)))))) | (38) |
3(0(4(3(4(x1))))) | → | 3(0(3(4(2(4(x1)))))) | (48) |
0(0(5(5(3(x1))))) | → | 0(5(0(3(2(5(x1)))))) | (47) |
0(1(1(0(x1)))) | → | 2(1(0(0(1(2(x1)))))) | (37) |
0(4(5(3(x1)))) | → | 4(3(5(0(2(4(x1)))))) | (41) |
0(5(0(4(x1)))) | → | 5(0(0(2(4(x1))))) | (42) |
0(0(1(0(4(x1))))) | → | 0(0(0(1(4(2(x1)))))) | (46) |
0(0(5(3(x1)))) | → | 0(5(2(5(0(3(x1)))))) | (35) |
3(0(4(x1))) | → | 5(5(2(4(0(3(x1)))))) | (29) |
0(5(5(3(x1)))) | → | 2(3(5(5(0(x1))))) | (43) |
0(0(x1)) | → | 0(2(3(4(0(2(x1)))))) | (2) |
0#(0(1(0(4(x1))))) | → | 0#(0(0(1(4(2(x1)))))) | (120) |
The dependency pairs are split into 0 components.