The rewrite relation of the following TRS is considered.
0(1(0(2(x1)))) | → | 0(0(3(1(2(x1))))) | (1) |
0(1(3(4(x1)))) | → | 0(4(1(0(3(x1))))) | (2) |
0(1(3(4(x1)))) | → | 0(4(1(1(3(x1))))) | (3) |
0(1(3(4(x1)))) | → | 0(4(1(3(1(x1))))) | (4) |
0(2(1(4(x1)))) | → | 0(4(1(2(3(x1))))) | (5) |
0(2(1(4(x1)))) | → | 0(4(1(3(2(x1))))) | (6) |
0(2(1(4(x1)))) | → | 2(0(4(1(4(x1))))) | (7) |
0(2(1(4(x1)))) | → | 5(5(0(4(1(2(x1)))))) | (8) |
0(2(1(5(x1)))) | → | 5(0(4(1(2(x1))))) | (9) |
0(2(2(4(x1)))) | → | 0(4(2(2(5(x1))))) | (10) |
0(2(2(4(x1)))) | → | 0(4(2(5(2(x1))))) | (11) |
3(4(0(2(x1)))) | → | 3(0(4(5(2(x1))))) | (12) |
3(4(0(2(x1)))) | → | 3(5(0(4(2(x1))))) | (13) |
0(0(1(4(5(x1))))) | → | 0(4(1(0(3(5(x1)))))) | (14) |
0(1(0(2(4(x1))))) | → | 2(0(0(4(1(1(x1)))))) | (15) |
0(1(2(3(4(x1))))) | → | 2(0(4(1(0(3(x1)))))) | (16) |
0(1(3(3(4(x1))))) | → | 0(0(3(1(3(4(x1)))))) | (17) |
0(1(4(0(2(x1))))) | → | 0(4(1(5(0(2(x1)))))) | (18) |
0(1(4(1(5(x1))))) | → | 2(5(0(4(1(1(x1)))))) | (19) |
0(1(4(3(4(x1))))) | → | 0(4(0(3(1(4(x1)))))) | (20) |
0(1(4(3(4(x1))))) | → | 3(0(4(1(5(4(x1)))))) | (21) |
0(1(4(3(5(x1))))) | → | 5(4(5(0(3(1(x1)))))) | (22) |
0(1(5(0(2(x1))))) | → | 0(0(4(1(2(5(x1)))))) | (23) |
0(1(5(1(4(x1))))) | → | 4(5(0(3(1(1(x1)))))) | (24) |
0(2(1(4(4(x1))))) | → | 0(4(1(2(4(3(x1)))))) | (25) |
0(2(1(4(5(x1))))) | → | 0(4(1(2(5(2(x1)))))) | (26) |
0(2(1(5(4(x1))))) | → | 5(0(2(0(4(1(x1)))))) | (27) |
0(2(4(1(5(x1))))) | → | 5(0(4(1(5(2(x1)))))) | (28) |
0(2(4(3(5(x1))))) | → | 0(4(5(2(5(3(x1)))))) | (29) |
0(2(5(1(4(x1))))) | → | 0(0(5(4(1(2(x1)))))) | (30) |
3(0(1(3(2(x1))))) | → | 0(3(1(0(3(2(x1)))))) | (31) |
3(0(2(1(4(x1))))) | → | 4(0(4(1(3(2(x1)))))) | (32) |
3(0(2(1(5(x1))))) | → | 5(3(2(0(4(1(x1)))))) | (33) |
3(0(4(0(2(x1))))) | → | 0(3(4(0(4(2(x1)))))) | (34) |
3(0(4(0(2(x1))))) | → | 0(4(1(2(0(3(x1)))))) | (35) |
3(0(5(1(4(x1))))) | → | 3(0(4(1(1(5(x1)))))) | (36) |
3(0(5(1(5(x1))))) | → | 0(4(1(3(5(5(x1)))))) | (37) |
3(2(4(1(2(x1))))) | → | 3(1(2(2(5(4(x1)))))) | (38) |
3(2(4(1(5(x1))))) | → | 3(1(4(5(2(5(x1)))))) | (39) |
3(4(0(1(2(x1))))) | → | 0(4(2(0(3(1(x1)))))) | (40) |
3(4(0(1(4(x1))))) | → | 0(4(1(5(3(4(x1)))))) | (41) |
3(4(0(1(5(x1))))) | → | 0(4(1(5(5(3(x1)))))) | (42) |
3(4(0(2(4(x1))))) | → | 0(3(4(0(4(2(x1)))))) | (43) |
3(4(1(2(4(x1))))) | → | 0(4(1(2(4(3(x1)))))) | (44) |
3(4(1(3(5(x1))))) | → | 4(3(0(3(1(5(x1)))))) | (45) |
3(4(3(0(2(x1))))) | → | 3(3(0(4(1(2(x1)))))) | (46) |
3(4(5(0(2(x1))))) | → | 0(3(0(4(2(5(x1)))))) | (47) |
3(5(0(2(2(x1))))) | → | 0(3(2(5(2(5(x1)))))) | (48) |
3(5(2(1(4(x1))))) | → | 3(5(1(0(4(2(x1)))))) | (49) |
There are 101 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
3#(4(0(1(4(x1))))) | → | 3#(4(x1)) | (149) |
0#(0(1(4(5(x1))))) | → | 0#(3(5(x1))) | (108) |
0#(1(2(3(4(x1))))) | → | 0#(3(x1)) | (102) |
0#(2(1(4(4(x1))))) | → | 3#(x1) | (101) |
0#(2(4(3(5(x1))))) | → | 3#(x1) | (144) |
0#(1(3(4(x1)))) | → | 3#(x1) | (115) |
3#(4(0(1(5(x1))))) | → | 3#(x1) | (140) |
3#(4(1(2(4(x1))))) | → | 3#(x1) | (137) |
3#(0(4(0(2(x1))))) | → | 3#(x1) | (84) |
0#(1(2(3(4(x1))))) | → | 3#(x1) | (80) |
3#(0(1(3(2(x1))))) | → | 0#(3(2(x1))) | (66) |
0#(1(3(4(x1)))) | → | 3#(x1) | (115) |
3#(0(4(0(2(x1))))) | → | 0#(3(x1)) | (114) |
0#(2(1(4(x1)))) | → | 3#(x1) | (56) |
0#(1(3(4(x1)))) | → | 0#(3(x1)) | (50) |
[0#(x1)] | = | x1 + 0 |
[1(x1)] | = | 24391 |
[4(x1)] | = | 1 |
[5(x1)] | = | 1 |
[3(x1)] | = | 1 |
[0(x1)] | = | x1 + 0 |
[3#(x1)] | = | 2 |
[2(x1)] | = | 24391 |
0(1(4(0(2(x1))))) | → | 0(4(1(5(0(2(x1)))))) | (18) |
0(1(3(4(x1)))) | → | 0(4(1(3(1(x1))))) | (4) |
0(1(0(2(4(x1))))) | → | 2(0(0(4(1(1(x1)))))) | (15) |
0(2(1(4(x1)))) | → | 5(5(0(4(1(2(x1)))))) | (8) |
0(1(0(2(x1)))) | → | 0(0(3(1(2(x1))))) | (1) |
0(1(3(4(x1)))) | → | 0(4(1(1(3(x1))))) | (3) |
0(1(2(3(4(x1))))) | → | 2(0(4(1(0(3(x1)))))) | (16) |
0(1(4(3(4(x1))))) | → | 3(0(4(1(5(4(x1)))))) | (21) |
3(0(5(1(4(x1))))) | → | 3(0(4(1(1(5(x1)))))) | (36) |
0(2(1(4(5(x1))))) | → | 0(4(1(2(5(2(x1)))))) | (26) |
0(1(4(1(5(x1))))) | → | 2(5(0(4(1(1(x1)))))) | (19) |
3(0(2(1(4(x1))))) | → | 4(0(4(1(3(2(x1)))))) | (32) |
0(1(3(3(4(x1))))) | → | 0(0(3(1(3(4(x1)))))) | (17) |
0(2(1(5(4(x1))))) | → | 5(0(2(0(4(1(x1)))))) | (27) |
3(0(4(0(2(x1))))) | → | 0(3(4(0(4(2(x1)))))) | (34) |
0(1(4(3(5(x1))))) | → | 5(4(5(0(3(1(x1)))))) | (22) |
0(2(4(1(5(x1))))) | → | 5(0(4(1(5(2(x1)))))) | (28) |
3(4(1(2(4(x1))))) | → | 0(4(1(2(4(3(x1)))))) | (44) |
0(2(1(4(x1)))) | → | 0(4(1(2(3(x1))))) | (5) |
3(0(2(1(5(x1))))) | → | 5(3(2(0(4(1(x1)))))) | (33) |
0(2(2(4(x1)))) | → | 0(4(2(2(5(x1))))) | (10) |
3(2(4(1(5(x1))))) | → | 3(1(4(5(2(5(x1)))))) | (39) |
0(2(1(4(x1)))) | → | 2(0(4(1(4(x1))))) | (7) |
0(1(4(3(4(x1))))) | → | 0(4(0(3(1(4(x1)))))) | (20) |
0(2(1(4(4(x1))))) | → | 0(4(1(2(4(3(x1)))))) | (25) |
3(5(2(1(4(x1))))) | → | 3(5(1(0(4(2(x1)))))) | (49) |
0(2(5(1(4(x1))))) | → | 0(0(5(4(1(2(x1)))))) | (30) |
0(0(1(4(5(x1))))) | → | 0(4(1(0(3(5(x1)))))) | (14) |
3(0(1(3(2(x1))))) | → | 0(3(1(0(3(2(x1)))))) | (31) |
3(4(0(2(x1)))) | → | 3(0(4(5(2(x1))))) | (12) |
3(4(1(3(5(x1))))) | → | 4(3(0(3(1(5(x1)))))) | (45) |
0(1(5(0(2(x1))))) | → | 0(0(4(1(2(5(x1)))))) | (23) |
0(1(5(1(4(x1))))) | → | 4(5(0(3(1(1(x1)))))) | (24) |
0(2(2(4(x1)))) | → | 0(4(2(5(2(x1))))) | (11) |
0(2(1(5(x1)))) | → | 5(0(4(1(2(x1))))) | (9) |
3(4(0(2(x1)))) | → | 3(5(0(4(2(x1))))) | (13) |
3(4(0(1(2(x1))))) | → | 0(4(2(0(3(1(x1)))))) | (40) |
0(2(1(4(x1)))) | → | 0(4(1(3(2(x1))))) | (6) |
3(2(4(1(2(x1))))) | → | 3(1(2(2(5(4(x1)))))) | (38) |
3(5(0(2(2(x1))))) | → | 0(3(2(5(2(5(x1)))))) | (48) |
3(4(5(0(2(x1))))) | → | 0(3(0(4(2(5(x1)))))) | (47) |
3(0(5(1(5(x1))))) | → | 0(4(1(3(5(5(x1)))))) | (37) |
3(4(0(1(4(x1))))) | → | 0(4(1(5(3(4(x1)))))) | (41) |
3(4(0(1(5(x1))))) | → | 0(4(1(5(5(3(x1)))))) | (42) |
3(4(3(0(2(x1))))) | → | 3(3(0(4(1(2(x1)))))) | (46) |
3(0(4(0(2(x1))))) | → | 0(4(1(2(0(3(x1)))))) | (35) |
0(2(4(3(5(x1))))) | → | 0(4(5(2(5(3(x1)))))) | (29) |
3(4(0(2(4(x1))))) | → | 0(3(4(0(4(2(x1)))))) | (43) |
0(1(3(4(x1)))) | → | 0(4(1(0(3(x1))))) | (2) |
0#(0(1(4(5(x1))))) | → | 0#(3(5(x1))) | (108) |
0#(1(2(3(4(x1))))) | → | 0#(3(x1)) | (102) |
0#(2(1(4(4(x1))))) | → | 3#(x1) | (101) |
0#(2(4(3(5(x1))))) | → | 3#(x1) | (144) |
0#(1(3(4(x1)))) | → | 3#(x1) | (115) |
0#(1(2(3(4(x1))))) | → | 3#(x1) | (80) |
3#(0(1(3(2(x1))))) | → | 0#(3(2(x1))) | (66) |
0#(1(3(4(x1)))) | → | 3#(x1) | (115) |
3#(0(4(0(2(x1))))) | → | 0#(3(x1)) | (114) |
0#(2(1(4(x1)))) | → | 3#(x1) | (56) |
0#(1(3(4(x1)))) | → | 0#(3(x1)) | (50) |
The dependency pairs are split into 1 component.
3#(4(1(2(4(x1))))) | → | 3#(x1) | (137) |
3#(4(0(1(4(x1))))) | → | 3#(4(x1)) | (149) |
3#(4(0(1(5(x1))))) | → | 3#(x1) | (140) |
3#(0(4(0(2(x1))))) | → | 3#(x1) | (84) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 14132 |
[4(x1)] | = | x1 + 27570 |
[5(x1)] | = | x1 + 7066 |
[3(x1)] | = | 7067 |
[0(x1)] | = | x1 + 0 |
[3#(x1)] | = | x1 + 2 |
[2(x1)] | = | x1 + 0 |
3#(4(1(2(4(x1))))) | → | 3#(x1) | (137) |
3#(4(0(1(4(x1))))) | → | 3#(4(x1)) | (149) |
3#(4(0(1(5(x1))))) | → | 3#(x1) | (140) |
3#(0(4(0(2(x1))))) | → | 3#(x1) | (84) |
The dependency pairs are split into 0 components.