The rewrite relation of the following TRS is considered.
0(0(0(x1))) | → | 0(0(1(0(2(x1))))) | (1) |
0(3(2(x1))) | → | 4(3(0(2(x1)))) | (2) |
0(0(4(2(x1)))) | → | 0(4(1(0(2(x1))))) | (3) |
0(0(5(2(x1)))) | → | 5(0(2(3(0(x1))))) | (4) |
0(1(3(2(x1)))) | → | 0(3(1(0(2(x1))))) | (5) |
0(1(3(2(x1)))) | → | 3(1(1(0(2(x1))))) | (6) |
0(1(3(2(x1)))) | → | 0(1(4(3(1(2(x1)))))) | (7) |
0(4(1(3(x1)))) | → | 1(4(3(0(2(2(x1)))))) | (8) |
0(4(2(3(x1)))) | → | 5(4(3(0(2(x1))))) | (9) |
0(4(5(2(x1)))) | → | 5(0(2(2(4(2(x1)))))) | (10) |
0(5(1(3(x1)))) | → | 3(0(1(5(1(2(x1)))))) | (11) |
0(5(3(0(x1)))) | → | 5(0(1(4(3(0(x1)))))) | (12) |
0(5(3(2(x1)))) | → | 5(1(5(0(2(3(x1)))))) | (13) |
4(0(2(3(x1)))) | → | 3(4(3(0(2(x1))))) | (14) |
4(0(2(3(x1)))) | → | 4(3(5(0(2(x1))))) | (15) |
4(4(1(3(x1)))) | → | 4(3(4(1(2(2(x1)))))) | (16) |
4(5(2(0(x1)))) | → | 4(2(1(5(0(2(x1)))))) | (17) |
4(5(2(0(x1)))) | → | 5(1(0(2(2(4(x1)))))) | (18) |
5(1(0(0(x1)))) | → | 5(1(0(2(0(x1))))) | (19) |
5(1(0(0(x1)))) | → | 5(2(1(0(2(0(x1)))))) | (20) |
5(1(3(0(x1)))) | → | 5(0(2(1(3(x1))))) | (21) |
5(1(3(2(x1)))) | → | 3(0(1(5(1(2(x1)))))) | (22) |
5(1(3(2(x1)))) | → | 3(1(1(5(2(2(x1)))))) | (23) |
5(3(0(0(x1)))) | → | 5(0(4(3(0(2(x1)))))) | (24) |
0(0(4(1(3(x1))))) | → | 4(0(1(0(2(3(x1)))))) | (25) |
0(0(4(5(2(x1))))) | → | 5(0(1(0(2(4(x1)))))) | (26) |
0(0(5(3(2(x1))))) | → | 0(1(5(0(2(3(x1)))))) | (27) |
0(1(0(5(2(x1))))) | → | 1(0(2(5(1(0(x1)))))) | (28) |
0(1(4(5(2(x1))))) | → | 2(1(5(0(2(4(x1)))))) | (29) |
0(3(1(4(0(x1))))) | → | 4(1(0(1(0(3(x1)))))) | (30) |
0(3(2(0(0(x1))))) | → | 0(0(1(0(2(3(x1)))))) | (31) |
0(3(4(0(2(x1))))) | → | 4(3(0(2(1(0(x1)))))) | (32) |
0(3(4(0(2(x1))))) | → | 4(3(0(2(3(0(x1)))))) | (33) |
0(3(4(4(2(x1))))) | → | 4(0(3(4(2(2(x1)))))) | (34) |
0(4(2(5(3(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (35) |
0(5(1(2(0(x1))))) | → | 3(0(1(5(0(2(x1)))))) | (36) |
4(4(2(2(0(x1))))) | → | 4(1(0(2(2(4(x1)))))) | (37) |
4(5(1(2(0(x1))))) | → | 5(0(4(1(2(2(x1)))))) | (38) |
4(5(2(3(2(x1))))) | → | 5(4(3(5(2(2(x1)))))) | (39) |
5(1(0(3(2(x1))))) | → | 5(0(3(1(0(2(x1)))))) | (40) |
5(1(0(5(3(x1))))) | → | 5(5(0(1(3(1(x1)))))) | (41) |
5(1(3(0(0(x1))))) | → | 3(5(0(1(2(0(x1)))))) | (42) |
5(1(3(0(2(x1))))) | → | 3(0(2(1(5(2(x1)))))) | (43) |
5(1(3(0(2(x1))))) | → | 5(0(1(0(3(2(x1)))))) | (44) |
5(1(3(0(2(x1))))) | → | 5(0(1(1(2(3(x1)))))) | (45) |
5(1(3(2(0(x1))))) | → | 5(3(1(5(2(0(x1)))))) | (46) |
5(1(3(2(3(x1))))) | → | 3(4(3(5(1(2(x1)))))) | (47) |
5(1(4(5(2(x1))))) | → | 5(1(4(1(5(2(x1)))))) | (48) |
5(5(1(3(2(x1))))) | → | 3(5(5(4(1(2(x1)))))) | (49) |
There are 128 ruless (increase limit for explicit display).
The dependency pairs are split into 2 components.
5#(1(3(0(2(x1))))) | → | 0#(1(0(3(2(x1))))) | (171) |
5#(1(3(0(2(x1))))) | → | 5#(0(1(0(3(2(x1)))))) | (110) |
0#(3(1(4(0(x1))))) | → | 0#(1(0(3(x1)))) | (111) |
0#(3(4(0(2(x1))))) | → | 0#(x1) | (93) |
0#(3(1(4(0(x1))))) | → | 0#(3(x1)) | (94) |
0#(3(4(0(2(x1))))) | → | 0#(x1) | (93) |
0#(0(5(2(x1)))) | → | 0#(x1) | (150) |
0#(1(0(5(2(x1))))) | → | 0#(x1) | (142) |
0#(1(0(5(2(x1))))) | → | 5#(1(0(x1))) | (55) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[4#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[5#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
4(5(2(0(x1)))) | → | 5(1(0(2(2(4(x1)))))) | (18) |
0(0(5(2(x1)))) | → | 5(0(2(3(0(x1))))) | (4) |
4(0(2(3(x1)))) | → | 4(3(5(0(2(x1))))) | (15) |
0(4(1(3(x1)))) | → | 1(4(3(0(2(2(x1)))))) | (8) |
0(0(0(x1))) | → | 0(0(1(0(2(x1))))) | (1) |
0(0(4(2(x1)))) | → | 0(4(1(0(2(x1))))) | (3) |
4(4(1(3(x1)))) | → | 4(3(4(1(2(2(x1)))))) | (16) |
5(1(3(0(x1)))) | → | 5(0(2(1(3(x1))))) | (21) |
0(5(1(2(0(x1))))) | → | 3(0(1(5(0(2(x1)))))) | (36) |
0(0(4(5(2(x1))))) | → | 5(0(1(0(2(4(x1)))))) | (26) |
5(1(0(0(x1)))) | → | 5(1(0(2(0(x1))))) | (19) |
0(3(4(0(2(x1))))) | → | 4(3(0(2(1(0(x1)))))) | (32) |
4(5(2(0(x1)))) | → | 4(2(1(5(0(2(x1)))))) | (17) |
0(0(5(3(2(x1))))) | → | 0(1(5(0(2(3(x1)))))) | (27) |
0(3(4(4(2(x1))))) | → | 4(0(3(4(2(2(x1)))))) | (34) |
5(1(3(2(x1)))) | → | 3(0(1(5(1(2(x1)))))) | (22) |
0(1(0(5(2(x1))))) | → | 1(0(2(5(1(0(x1)))))) | (28) |
5(1(3(0(2(x1))))) | → | 5(0(1(0(3(2(x1)))))) | (44) |
0(1(3(2(x1)))) | → | 0(3(1(0(2(x1))))) | (5) |
0(3(4(0(2(x1))))) | → | 4(3(0(2(3(0(x1)))))) | (33) |
0(4(5(2(x1)))) | → | 5(0(2(2(4(2(x1)))))) | (10) |
4(5(2(3(2(x1))))) | → | 5(4(3(5(2(2(x1)))))) | (39) |
0(1(3(2(x1)))) | → | 0(1(4(3(1(2(x1)))))) | (7) |
5(1(0(0(x1)))) | → | 5(2(1(0(2(0(x1)))))) | (20) |
0(0(4(1(3(x1))))) | → | 4(0(1(0(2(3(x1)))))) | (25) |
5(5(1(3(2(x1))))) | → | 3(5(5(4(1(2(x1)))))) | (49) |
0(3(1(4(0(x1))))) | → | 4(1(0(1(0(3(x1)))))) | (30) |
4(0(2(3(x1)))) | → | 3(4(3(0(2(x1))))) | (14) |
0(3(2(0(0(x1))))) | → | 0(0(1(0(2(3(x1)))))) | (31) |
0(5(3(0(x1)))) | → | 5(0(1(4(3(0(x1)))))) | (12) |
5(1(3(0(2(x1))))) | → | 5(0(1(1(2(3(x1)))))) | (45) |
5(1(3(2(x1)))) | → | 3(1(1(5(2(2(x1)))))) | (23) |
5(3(0(0(x1)))) | → | 5(0(4(3(0(2(x1)))))) | (24) |
0(5(1(3(x1)))) | → | 3(0(1(5(1(2(x1)))))) | (11) |
0(4(2(3(x1)))) | → | 5(4(3(0(2(x1))))) | (9) |
0(5(3(2(x1)))) | → | 5(1(5(0(2(3(x1)))))) | (13) |
5(1(0(3(2(x1))))) | → | 5(0(3(1(0(2(x1)))))) | (40) |
0(1(3(2(x1)))) | → | 3(1(1(0(2(x1))))) | (6) |
4(5(1(2(0(x1))))) | → | 5(0(4(1(2(2(x1)))))) | (38) |
5(1(4(5(2(x1))))) | → | 5(1(4(1(5(2(x1)))))) | (48) |
5(1(3(2(3(x1))))) | → | 3(4(3(5(1(2(x1)))))) | (47) |
4(4(2(2(0(x1))))) | → | 4(1(0(2(2(4(x1)))))) | (37) |
5(1(0(5(3(x1))))) | → | 5(5(0(1(3(1(x1)))))) | (41) |
5(1(3(0(0(x1))))) | → | 3(5(0(1(2(0(x1)))))) | (42) |
5(1(3(2(0(x1))))) | → | 5(3(1(5(2(0(x1)))))) | (46) |
0(4(2(5(3(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (35) |
0(1(4(5(2(x1))))) | → | 2(1(5(0(2(4(x1)))))) | (29) |
5(1(3(0(2(x1))))) | → | 3(0(2(1(5(2(x1)))))) | (43) |
0(3(2(x1))) | → | 4(3(0(2(x1)))) | (2) |
5#(1(3(0(2(x1))))) | → | 5#(0(1(0(3(2(x1)))))) | (110) |
The dependency pairs are split into 1 component.
0#(0(5(2(x1)))) | → | 0#(x1) | (150) |
0#(3(4(0(2(x1))))) | → | 0#(x1) | (93) |
0#(1(0(5(2(x1))))) | → | 0#(x1) | (142) |
0#(1(0(5(2(x1))))) | → | 5#(1(0(x1))) | (55) |
5#(1(3(0(2(x1))))) | → | 0#(1(0(3(2(x1))))) | (171) |
0#(3(4(0(2(x1))))) | → | 0#(x1) | (93) |
0#(3(1(4(0(x1))))) | → | 0#(3(x1)) | (94) |
0#(3(1(4(0(x1))))) | → | 0#(1(0(3(x1)))) | (111) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[4#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[5#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
4(5(2(0(x1)))) | → | 5(1(0(2(2(4(x1)))))) | (18) |
0(0(5(2(x1)))) | → | 5(0(2(3(0(x1))))) | (4) |
4(0(2(3(x1)))) | → | 4(3(5(0(2(x1))))) | (15) |
0(4(1(3(x1)))) | → | 1(4(3(0(2(2(x1)))))) | (8) |
0(0(0(x1))) | → | 0(0(1(0(2(x1))))) | (1) |
0(0(4(2(x1)))) | → | 0(4(1(0(2(x1))))) | (3) |
4(4(1(3(x1)))) | → | 4(3(4(1(2(2(x1)))))) | (16) |
5(1(3(0(x1)))) | → | 5(0(2(1(3(x1))))) | (21) |
0(5(1(2(0(x1))))) | → | 3(0(1(5(0(2(x1)))))) | (36) |
0(0(4(5(2(x1))))) | → | 5(0(1(0(2(4(x1)))))) | (26) |
5(1(0(0(x1)))) | → | 5(1(0(2(0(x1))))) | (19) |
0(3(4(0(2(x1))))) | → | 4(3(0(2(1(0(x1)))))) | (32) |
4(5(2(0(x1)))) | → | 4(2(1(5(0(2(x1)))))) | (17) |
0(0(5(3(2(x1))))) | → | 0(1(5(0(2(3(x1)))))) | (27) |
0(3(4(4(2(x1))))) | → | 4(0(3(4(2(2(x1)))))) | (34) |
5(1(3(2(x1)))) | → | 3(0(1(5(1(2(x1)))))) | (22) |
0(1(0(5(2(x1))))) | → | 1(0(2(5(1(0(x1)))))) | (28) |
5(1(3(0(2(x1))))) | → | 5(0(1(0(3(2(x1)))))) | (44) |
0(1(3(2(x1)))) | → | 0(3(1(0(2(x1))))) | (5) |
0(3(4(0(2(x1))))) | → | 4(3(0(2(3(0(x1)))))) | (33) |
0(4(5(2(x1)))) | → | 5(0(2(2(4(2(x1)))))) | (10) |
4(5(2(3(2(x1))))) | → | 5(4(3(5(2(2(x1)))))) | (39) |
0(1(3(2(x1)))) | → | 0(1(4(3(1(2(x1)))))) | (7) |
5(1(0(0(x1)))) | → | 5(2(1(0(2(0(x1)))))) | (20) |
0(0(4(1(3(x1))))) | → | 4(0(1(0(2(3(x1)))))) | (25) |
5(5(1(3(2(x1))))) | → | 3(5(5(4(1(2(x1)))))) | (49) |
0(3(1(4(0(x1))))) | → | 4(1(0(1(0(3(x1)))))) | (30) |
4(0(2(3(x1)))) | → | 3(4(3(0(2(x1))))) | (14) |
0(3(2(0(0(x1))))) | → | 0(0(1(0(2(3(x1)))))) | (31) |
0(5(3(0(x1)))) | → | 5(0(1(4(3(0(x1)))))) | (12) |
5(1(3(0(2(x1))))) | → | 5(0(1(1(2(3(x1)))))) | (45) |
5(1(3(2(x1)))) | → | 3(1(1(5(2(2(x1)))))) | (23) |
5(3(0(0(x1)))) | → | 5(0(4(3(0(2(x1)))))) | (24) |
0(5(1(3(x1)))) | → | 3(0(1(5(1(2(x1)))))) | (11) |
0(4(2(3(x1)))) | → | 5(4(3(0(2(x1))))) | (9) |
0(5(3(2(x1)))) | → | 5(1(5(0(2(3(x1)))))) | (13) |
5(1(0(3(2(x1))))) | → | 5(0(3(1(0(2(x1)))))) | (40) |
0(1(3(2(x1)))) | → | 3(1(1(0(2(x1))))) | (6) |
4(5(1(2(0(x1))))) | → | 5(0(4(1(2(2(x1)))))) | (38) |
5(1(4(5(2(x1))))) | → | 5(1(4(1(5(2(x1)))))) | (48) |
5(1(3(2(3(x1))))) | → | 3(4(3(5(1(2(x1)))))) | (47) |
4(4(2(2(0(x1))))) | → | 4(1(0(2(2(4(x1)))))) | (37) |
5(1(0(5(3(x1))))) | → | 5(5(0(1(3(1(x1)))))) | (41) |
5(1(3(0(0(x1))))) | → | 3(5(0(1(2(0(x1)))))) | (42) |
5(1(3(2(0(x1))))) | → | 5(3(1(5(2(0(x1)))))) | (46) |
0(4(2(5(3(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (35) |
0(1(4(5(2(x1))))) | → | 2(1(5(0(2(4(x1)))))) | (29) |
5(1(3(0(2(x1))))) | → | 3(0(2(1(5(2(x1)))))) | (43) |
0(3(2(x1))) | → | 4(3(0(2(x1)))) | (2) |
0#(0(5(2(x1)))) | → | 0#(x1) | (150) |
0#(3(4(0(2(x1))))) | → | 0#(x1) | (93) |
0#(1(0(5(2(x1))))) | → | 0#(x1) | (142) |
0#(1(0(5(2(x1))))) | → | 5#(1(0(x1))) | (55) |
5#(1(3(0(2(x1))))) | → | 0#(1(0(3(2(x1))))) | (171) |
0#(3(4(0(2(x1))))) | → | 0#(x1) | (93) |
0#(3(1(4(0(x1))))) | → | 0#(3(x1)) | (94) |
0#(3(1(4(0(x1))))) | → | 0#(1(0(3(x1)))) | (111) |
The dependency pairs are split into 0 components.
4#(5(2(0(x1)))) | → | 4#(x1) | (100) |
4#(4(2(2(0(x1))))) | → | 4#(x1) | (123) |
[0#(x1)] | = | 0 |
[1(x1)] | = | 80921 |
[4(x1)] | = | x1 + 50576 |
[5(x1)] | = | x1 + 20230 |
[3(x1)] | = | 121382 |
[4#(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 10114 |
[5#(x1)] | = | 0 |
[2(x1)] | = | x1 + 10115 |
4#(5(2(0(x1)))) | → | 4#(x1) | (100) |
4#(4(2(2(0(x1))))) | → | 4#(x1) | (123) |
The dependency pairs are split into 0 components.