The rewrite relation of the following TRS is considered.
1(1(x1)) | → | 4(3(x1)) | (1) |
1(2(x1)) | → | 2(1(x1)) | (2) |
2(2(x1)) | → | 1(1(1(x1))) | (3) |
3(3(x1)) | → | 5(6(x1)) | (4) |
3(4(x1)) | → | 1(1(x1)) | (5) |
4(4(x1)) | → | 3(x1) | (6) |
5(5(x1)) | → | 6(2(x1)) | (7) |
5(6(x1)) | → | 1(2(x1)) | (8) |
6(6(x1)) | → | 2(1(x1)) | (9) |
1#(2(x1)) | → | 1#(x1) | (10) |
5#(5(x1)) | → | 6#(2(x1)) | (11) |
1#(1(x1)) | → | 4#(3(x1)) | (12) |
3#(4(x1)) | → | 1#(x1) | (13) |
2#(2(x1)) | → | 1#(1(x1)) | (14) |
2#(2(x1)) | → | 1#(x1) | (15) |
1#(1(x1)) | → | 3#(x1) | (16) |
5#(5(x1)) | → | 2#(x1) | (17) |
2#(2(x1)) | → | 1#(1(1(x1))) | (18) |
6#(6(x1)) | → | 1#(x1) | (19) |
3#(3(x1)) | → | 5#(6(x1)) | (20) |
5#(6(x1)) | → | 2#(x1) | (21) |
4#(4(x1)) | → | 3#(x1) | (22) |
1#(2(x1)) | → | 2#(1(x1)) | (23) |
3#(4(x1)) | → | 1#(1(x1)) | (24) |
5#(6(x1)) | → | 1#(2(x1)) | (25) |
6#(6(x1)) | → | 2#(1(x1)) | (26) |
3#(3(x1)) | → | 6#(x1) | (27) |
The dependency pairs are split into 1 component.
3#(3(x1)) | → | 6#(x1) | (27) |
6#(6(x1)) | → | 2#(1(x1)) | (26) |
1#(1(x1)) | → | 3#(x1) | (16) |
5#(6(x1)) | → | 1#(2(x1)) | (25) |
2#(2(x1)) | → | 1#(x1) | (15) |
3#(4(x1)) | → | 1#(1(x1)) | (24) |
1#(2(x1)) | → | 2#(1(x1)) | (23) |
4#(4(x1)) | → | 3#(x1) | (22) |
5#(6(x1)) | → | 2#(x1) | (21) |
2#(2(x1)) | → | 1#(1(x1)) | (14) |
3#(4(x1)) | → | 1#(x1) | (13) |
1#(1(x1)) | → | 4#(3(x1)) | (12) |
3#(3(x1)) | → | 5#(6(x1)) | (20) |
5#(5(x1)) | → | 6#(2(x1)) | (11) |
6#(6(x1)) | → | 1#(x1) | (19) |
2#(2(x1)) | → | 1#(1(1(x1))) | (18) |
5#(5(x1)) | → | 2#(x1) | (17) |
1#(2(x1)) | → | 1#(x1) | (10) |
[1(x1)] | = | x1 + 90 |
[4(x1)] | = | x1 + 61 |
[5(x1)] | = | x1 + 125 |
[3(x1)] | = | x1 + 119 |
[6#(x1)] | = | x1 + 53 |
[2#(x1)] | = | x1 + 75 |
[4#(x1)] | = | x1 + 0 |
[3#(x1)] | = | x1 + 60 |
[5#(x1)] | = | x1 + 65 |
[2(x1)] | = | x1 + 136 |
[6(x1)] | = | x1 + 113 |
[1#(x1)] | = | x1 + 30 |
3(3(x1)) | → | 5(6(x1)) | (4) |
5(6(x1)) | → | 1(2(x1)) | (8) |
1(1(x1)) | → | 4(3(x1)) | (1) |
2(2(x1)) | → | 1(1(1(x1))) | (3) |
3(4(x1)) | → | 1(1(x1)) | (5) |
5(5(x1)) | → | 6(2(x1)) | (7) |
6(6(x1)) | → | 2(1(x1)) | (9) |
4(4(x1)) | → | 3(x1) | (6) |
1(2(x1)) | → | 2(1(x1)) | (2) |
3#(3(x1)) | → | 6#(x1) | (27) |
6#(6(x1)) | → | 2#(1(x1)) | (26) |
1#(1(x1)) | → | 3#(x1) | (16) |
5#(6(x1)) | → | 1#(2(x1)) | (25) |
2#(2(x1)) | → | 1#(x1) | (15) |
3#(4(x1)) | → | 1#(1(x1)) | (24) |
1#(2(x1)) | → | 2#(1(x1)) | (23) |
4#(4(x1)) | → | 3#(x1) | (22) |
5#(6(x1)) | → | 2#(x1) | (21) |
2#(2(x1)) | → | 1#(1(x1)) | (14) |
3#(4(x1)) | → | 1#(x1) | (13) |
1#(1(x1)) | → | 4#(3(x1)) | (12) |
3#(3(x1)) | → | 5#(6(x1)) | (20) |
5#(5(x1)) | → | 6#(2(x1)) | (11) |
6#(6(x1)) | → | 1#(x1) | (19) |
2#(2(x1)) | → | 1#(1(1(x1))) | (18) |
5#(5(x1)) | → | 2#(x1) | (17) |
1#(2(x1)) | → | 1#(x1) | (10) |
The dependency pairs are split into 0 components.