Certification Problem

Input (TPDB SRS_Standard/ICFP_2010/160234)

The rewrite relation of the following TRS is considered.

0(1(2(x1))) 2(3(0(3(1(x1))))) (1)
0(0(0(2(x1)))) 3(0(0(3(0(2(x1)))))) (2)
0(0(2(2(x1)))) 2(3(0(0(3(2(x1)))))) (3)
0(1(1(2(x1)))) 2(3(0(3(1(1(x1)))))) (4)
0(1(2(1(x1)))) 0(1(2(4(1(3(x1)))))) (5)
0(1(2(2(x1)))) 2(3(0(3(1(2(x1)))))) (6)
0(1(2(5(x1)))) 2(0(5(3(1(x1))))) (7)
0(1(5(1(x1)))) 1(0(3(5(3(1(x1)))))) (8)
0(1(5(2(x1)))) 2(4(1(0(3(5(x1)))))) (9)
0(1(5(2(x1)))) 2(4(3(1(0(5(x1)))))) (10)
0(1(5(2(x1)))) 3(1(3(0(5(2(x1)))))) (11)
0(1(5(5(x1)))) 1(3(0(5(5(x1))))) (12)
0(2(1(2(x1)))) 2(2(3(0(3(1(x1)))))) (13)
0(2(5(2(x1)))) 2(2(3(0(5(x1))))) (14)
1(1(4(5(x1)))) 5(4(1(3(1(x1))))) (15)
1(5(1(5(x1)))) 1(3(5(5(3(1(x1)))))) (16)
1(5(5(1(x1)))) 1(5(3(1(5(3(x1)))))) (17)
2(0(1(2(x1)))) 2(2(3(0(3(1(x1)))))) (18)
2(0(1(5(x1)))) 2(1(3(0(5(x1))))) (19)
5(0(1(2(x1)))) 3(0(5(3(1(2(x1)))))) (20)
5(0(1(2(x1)))) 4(2(3(0(5(1(x1)))))) (21)
0(0(0(0(1(x1))))) 0(0(1(0(0(3(x1)))))) (22)
0(0(1(2(5(x1))))) 2(0(0(5(3(1(x1)))))) (23)
0(0(1(5(2(x1))))) 0(1(0(3(5(2(x1)))))) (24)
0(1(0(4(5(x1))))) 5(4(0(0(3(1(x1)))))) (25)
0(1(1(1(2(x1))))) 1(0(3(1(1(2(x1)))))) (26)
0(1(2(1(5(x1))))) 2(1(0(5(3(1(x1)))))) (27)
0(1(3(5(2(x1))))) 3(0(4(1(5(2(x1)))))) (28)
0(1(4(2(5(x1))))) 2(4(3(0(5(1(x1)))))) (29)
0(1(4(4(2(x1))))) 1(0(4(4(4(2(x1)))))) (30)
0(1(5(0(1(x1))))) 0(1(1(0(5(3(x1)))))) (31)
0(1(5(0(5(x1))))) 3(5(1(0(5(0(x1)))))) (32)
0(2(4(2(1(x1))))) 2(1(2(4(3(0(x1)))))) (33)
0(4(0(2(1(x1))))) 3(0(4(1(2(0(x1)))))) (34)
0(5(0(1(5(x1))))) 0(5(0(5(3(1(x1)))))) (35)
1(0(0(1(5(x1))))) 5(1(0(0(3(1(x1)))))) (36)
1(0(1(4(5(x1))))) 1(4(4(1(0(5(x1)))))) (37)
1(4(0(1(5(x1))))) 1(4(1(3(0(5(x1)))))) (38)
2(0(1(5(2(x1))))) 2(1(0(3(5(2(x1)))))) (39)
2(0(4(2(1(x1))))) 2(1(4(2(3(0(x1)))))) (40)
2(0(5(1(2(x1))))) 0(3(1(5(2(2(x1)))))) (41)
2(2(1(1(2(x1))))) 2(2(1(3(1(2(x1)))))) (42)
2(5(1(5(2(x1))))) 2(4(1(5(5(2(x1)))))) (43)
5(0(1(4(5(x1))))) 4(1(0(3(5(5(x1)))))) (44)
5(1(0(1(5(x1))))) 3(1(5(1(0(5(x1)))))) (45)
5(4(0(2(1(x1))))) 4(1(3(5(2(0(x1)))))) (46)
5(5(1(4(5(x1))))) 5(4(1(3(5(5(x1)))))) (47)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
2(1(0(x1))) 1(3(0(3(2(x1))))) (48)
2(0(0(0(x1)))) 2(0(3(0(0(3(x1)))))) (49)
2(2(0(0(x1)))) 2(3(0(0(3(2(x1)))))) (50)
2(1(1(0(x1)))) 1(1(3(0(3(2(x1)))))) (51)
1(2(1(0(x1)))) 3(1(4(2(1(0(x1)))))) (52)
2(2(1(0(x1)))) 2(1(3(0(3(2(x1)))))) (53)
5(2(1(0(x1)))) 1(3(5(0(2(x1))))) (54)
1(5(1(0(x1)))) 1(3(5(3(0(1(x1)))))) (55)
2(5(1(0(x1)))) 5(3(0(1(4(2(x1)))))) (56)
2(5(1(0(x1)))) 5(0(1(3(4(2(x1)))))) (57)
2(5(1(0(x1)))) 2(5(0(3(1(3(x1)))))) (58)
5(5(1(0(x1)))) 5(5(0(3(1(x1))))) (59)
2(1(2(0(x1)))) 1(3(0(3(2(2(x1)))))) (60)
2(5(2(0(x1)))) 5(0(3(2(2(x1))))) (61)
5(4(1(1(x1)))) 1(3(1(4(5(x1))))) (62)
5(1(5(1(x1)))) 1(3(5(5(3(1(x1)))))) (63)
1(5(5(1(x1)))) 3(5(1(3(5(1(x1)))))) (64)
2(1(0(2(x1)))) 1(3(0(3(2(2(x1)))))) (65)
5(1(0(2(x1)))) 5(0(3(1(2(x1))))) (66)
2(1(0(5(x1)))) 2(1(3(5(0(3(x1)))))) (67)
2(1(0(5(x1)))) 1(5(0(3(2(4(x1)))))) (68)
1(0(0(0(0(x1))))) 3(0(0(1(0(0(x1)))))) (69)
5(2(1(0(0(x1))))) 1(3(5(0(0(2(x1)))))) (70)
2(5(1(0(0(x1))))) 2(5(3(0(1(0(x1)))))) (71)
5(4(0(1(0(x1))))) 1(3(0(0(4(5(x1)))))) (72)
2(1(1(1(0(x1))))) 2(1(1(3(0(1(x1)))))) (73)
5(1(2(1(0(x1))))) 1(3(5(0(1(2(x1)))))) (74)
2(5(3(1(0(x1))))) 2(5(1(4(0(3(x1)))))) (75)
5(2(4(1(0(x1))))) 1(5(0(3(4(2(x1)))))) (76)
2(4(4(1(0(x1))))) 2(4(4(4(0(1(x1)))))) (77)
1(0(5(1(0(x1))))) 3(5(0(1(1(0(x1)))))) (78)
5(0(5(1(0(x1))))) 0(5(0(1(5(3(x1)))))) (79)
1(2(4(2(0(x1))))) 0(3(4(2(1(2(x1)))))) (80)
1(2(0(4(0(x1))))) 0(2(1(4(0(3(x1)))))) (81)
5(1(0(5(0(x1))))) 1(3(5(0(5(0(x1)))))) (82)
5(1(0(0(1(x1))))) 1(3(0(0(1(5(x1)))))) (83)
5(4(1(0(1(x1))))) 5(0(1(4(4(1(x1)))))) (84)
5(1(0(4(1(x1))))) 5(0(3(1(4(1(x1)))))) (85)
2(5(1(0(2(x1))))) 2(5(3(0(1(2(x1)))))) (86)
1(2(4(0(2(x1))))) 0(3(2(4(1(2(x1)))))) (87)
2(1(5(0(2(x1))))) 2(2(5(1(3(0(x1)))))) (88)
2(1(1(2(2(x1))))) 2(1(3(1(2(2(x1)))))) (89)
2(5(1(5(2(x1))))) 2(5(5(1(4(2(x1)))))) (90)
5(4(1(0(5(x1))))) 5(5(3(0(1(4(x1)))))) (91)
5(1(0(1(5(x1))))) 5(0(1(5(1(3(x1)))))) (92)
1(2(0(4(5(x1))))) 0(2(5(3(1(4(x1)))))) (93)
5(4(1(5(5(x1))))) 5(5(3(1(4(5(x1)))))) (94)

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.

There are 125 ruless (increase limit for explicit display).

1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[5(x1)] = x1 +
1
[4(x1)] = x1 +
0
[3(x1)] = x1 +
0
[2(x1)] = x1 +
1
[1(x1)] = x1 +
1
[0(x1)] = x1 +
2
[5#(x1)] = x1 +
0
[2#(x1)] = x1 +
1
[1#(x1)] = x1 +
0
together with the usable rules
2(1(0(x1))) 1(3(0(3(2(x1))))) (48)
2(0(0(0(x1)))) 2(0(3(0(0(3(x1)))))) (49)
2(2(0(0(x1)))) 2(3(0(0(3(2(x1)))))) (50)
2(1(1(0(x1)))) 1(1(3(0(3(2(x1)))))) (51)
1(2(1(0(x1)))) 3(1(4(2(1(0(x1)))))) (52)
2(2(1(0(x1)))) 2(1(3(0(3(2(x1)))))) (53)
5(2(1(0(x1)))) 1(3(5(0(2(x1))))) (54)
1(5(1(0(x1)))) 1(3(5(3(0(1(x1)))))) (55)
2(5(1(0(x1)))) 5(3(0(1(4(2(x1)))))) (56)
2(5(1(0(x1)))) 5(0(1(3(4(2(x1)))))) (57)
2(5(1(0(x1)))) 2(5(0(3(1(3(x1)))))) (58)
5(5(1(0(x1)))) 5(5(0(3(1(x1))))) (59)
2(1(2(0(x1)))) 1(3(0(3(2(2(x1)))))) (60)
2(5(2(0(x1)))) 5(0(3(2(2(x1))))) (61)
5(4(1(1(x1)))) 1(3(1(4(5(x1))))) (62)
5(1(5(1(x1)))) 1(3(5(5(3(1(x1)))))) (63)
1(5(5(1(x1)))) 3(5(1(3(5(1(x1)))))) (64)
2(1(0(2(x1)))) 1(3(0(3(2(2(x1)))))) (65)
5(1(0(2(x1)))) 5(0(3(1(2(x1))))) (66)
2(1(0(5(x1)))) 2(1(3(5(0(3(x1)))))) (67)
2(1(0(5(x1)))) 1(5(0(3(2(4(x1)))))) (68)
1(0(0(0(0(x1))))) 3(0(0(1(0(0(x1)))))) (69)
5(2(1(0(0(x1))))) 1(3(5(0(0(2(x1)))))) (70)
2(5(1(0(0(x1))))) 2(5(3(0(1(0(x1)))))) (71)
5(4(0(1(0(x1))))) 1(3(0(0(4(5(x1)))))) (72)
2(1(1(1(0(x1))))) 2(1(1(3(0(1(x1)))))) (73)
5(1(2(1(0(x1))))) 1(3(5(0(1(2(x1)))))) (74)
2(5(3(1(0(x1))))) 2(5(1(4(0(3(x1)))))) (75)
5(2(4(1(0(x1))))) 1(5(0(3(4(2(x1)))))) (76)
2(4(4(1(0(x1))))) 2(4(4(4(0(1(x1)))))) (77)
1(0(5(1(0(x1))))) 3(5(0(1(1(0(x1)))))) (78)
5(0(5(1(0(x1))))) 0(5(0(1(5(3(x1)))))) (79)
1(2(4(2(0(x1))))) 0(3(4(2(1(2(x1)))))) (80)
1(2(0(4(0(x1))))) 0(2(1(4(0(3(x1)))))) (81)
5(1(0(5(0(x1))))) 1(3(5(0(5(0(x1)))))) (82)
5(1(0(0(1(x1))))) 1(3(0(0(1(5(x1)))))) (83)
5(4(1(0(1(x1))))) 5(0(1(4(4(1(x1)))))) (84)
5(1(0(4(1(x1))))) 5(0(3(1(4(1(x1)))))) (85)
2(5(1(0(2(x1))))) 2(5(3(0(1(2(x1)))))) (86)
1(2(4(0(2(x1))))) 0(3(2(4(1(2(x1)))))) (87)
2(1(5(0(2(x1))))) 2(2(5(1(3(0(x1)))))) (88)
2(1(1(2(2(x1))))) 2(1(3(1(2(2(x1)))))) (89)
2(5(1(5(2(x1))))) 2(5(5(1(4(2(x1)))))) (90)
5(4(1(0(5(x1))))) 5(5(3(0(1(4(x1)))))) (91)
5(1(0(1(5(x1))))) 5(0(1(5(1(3(x1)))))) (92)
1(2(0(4(5(x1))))) 0(2(5(3(1(4(x1)))))) (93)
5(4(1(5(5(x1))))) 5(5(3(1(4(5(x1)))))) (94)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
5#(5(1(0(x1)))) 5#(0(3(1(x1)))) (96)
5#(5(1(0(x1)))) 1#(x1) (97)
5#(4(1(5(5(x1))))) 5#(3(1(4(5(x1))))) (99)
5#(4(1(5(5(x1))))) 1#(4(5(x1))) (100)
5#(4(1(1(x1)))) 5#(x1) (101)
5#(4(1(1(x1)))) 1#(4(5(x1))) (102)
5#(4(1(0(5(x1))))) 5#(3(0(1(4(x1))))) (105)
5#(4(1(0(5(x1))))) 1#(4(x1)) (106)
5#(4(1(0(1(x1))))) 1#(4(4(1(x1)))) (108)
5#(4(0(1(0(x1))))) 5#(x1) (109)
5#(2(4(1(0(x1))))) 5#(0(3(4(2(x1))))) (111)
5#(2(4(1(0(x1))))) 2#(x1) (112)
5#(2(1(0(x1)))) 5#(0(2(x1))) (114)
5#(2(1(0(x1)))) 2#(x1) (115)
5#(2(1(0(0(x1))))) 5#(0(0(2(x1)))) (117)
5#(2(1(0(0(x1))))) 2#(x1) (118)
5#(1(5(1(x1)))) 5#(5(3(1(x1)))) (120)
5#(1(5(1(x1)))) 5#(3(1(x1))) (121)
5#(1(2(1(0(x1))))) 5#(0(1(2(x1)))) (123)
5#(1(2(1(0(x1))))) 2#(x1) (124)
5#(1(2(1(0(x1))))) 1#(2(x1)) (126)
5#(1(0(5(0(x1))))) 5#(0(5(0(x1)))) (127)
5#(1(0(4(1(x1))))) 1#(4(1(x1))) (130)
5#(1(0(2(x1)))) 1#(2(x1)) (132)
5#(1(0(1(5(x1))))) 5#(1(3(x1))) (133)
5#(1(0(1(5(x1))))) 1#(5(1(3(x1)))) (135)
5#(1(0(1(5(x1))))) 1#(3(x1)) (136)
5#(1(0(0(1(x1))))) 5#(x1) (137)
5#(1(0(0(1(x1))))) 1#(5(x1)) (138)
5#(0(5(1(0(x1))))) 5#(3(x1)) (140)
5#(0(5(1(0(x1))))) 5#(0(1(5(3(x1))))) (141)
5#(0(5(1(0(x1))))) 1#(5(3(x1))) (142)
2#(5(3(1(0(x1))))) 5#(1(4(0(3(x1))))) (143)
2#(5(3(1(0(x1))))) 1#(4(0(3(x1)))) (145)
2#(5(2(0(x1)))) 5#(0(3(2(2(x1))))) (146)
2#(5(2(0(x1)))) 2#(x1) (147)
2#(5(2(0(x1)))) 2#(2(x1)) (148)
2#(5(1(5(2(x1))))) 5#(5(1(4(2(x1))))) (149)
2#(5(1(5(2(x1))))) 5#(1(4(2(x1)))) (150)
2#(5(1(5(2(x1))))) 1#(4(2(x1))) (152)
2#(5(1(0(x1)))) 5#(3(0(1(4(2(x1)))))) (153)
2#(5(1(0(x1)))) 5#(0(3(1(3(x1))))) (154)
2#(5(1(0(x1)))) 5#(0(1(3(4(2(x1)))))) (155)
2#(5(1(0(x1)))) 2#(x1) (156)
2#(5(1(0(x1)))) 1#(4(2(x1))) (158)
2#(5(1(0(x1)))) 1#(3(x1)) (159)
2#(5(1(0(x1)))) 1#(3(4(2(x1)))) (160)
2#(5(1(0(2(x1))))) 5#(3(0(1(2(x1))))) (161)
2#(5(1(0(2(x1))))) 1#(2(x1)) (163)
2#(5(1(0(0(x1))))) 5#(3(0(1(0(x1))))) (164)
2#(5(1(0(0(x1))))) 1#(0(x1)) (166)
2#(4(4(1(0(x1))))) 1#(x1) (168)
2#(2(1(0(x1)))) 2#(x1) (169)
2#(2(1(0(x1)))) 1#(3(0(3(2(x1))))) (171)
2#(2(0(0(x1)))) 2#(x1) (172)
2#(1(5(0(2(x1))))) 5#(1(3(0(x1)))) (174)
2#(1(5(0(2(x1))))) 2#(5(1(3(0(x1))))) (175)
2#(1(5(0(2(x1))))) 1#(3(0(x1))) (177)
2#(1(2(0(x1)))) 2#(x1) (178)
2#(1(2(0(x1)))) 2#(2(x1)) (179)
2#(1(2(0(x1)))) 1#(3(0(3(2(2(x1)))))) (180)
2#(1(1(2(2(x1))))) 1#(3(1(2(2(x1))))) (182)
2#(1(1(1(0(x1))))) 1#(x1) (184)
2#(1(1(1(0(x1))))) 1#(3(0(1(x1)))) (185)
2#(1(1(1(0(x1))))) 1#(1(3(0(1(x1))))) (186)
2#(1(1(0(x1)))) 2#(x1) (187)
2#(1(1(0(x1)))) 1#(3(0(3(2(x1))))) (188)
2#(1(1(0(x1)))) 1#(1(3(0(3(2(x1)))))) (189)
2#(1(0(x1))) 2#(x1) (190)
2#(1(0(x1))) 1#(3(0(3(2(x1))))) (191)
2#(1(0(5(x1)))) 5#(0(3(x1))) (192)
2#(1(0(5(x1)))) 5#(0(3(2(4(x1))))) (193)
2#(1(0(5(x1)))) 2#(4(x1)) (194)
2#(1(0(5(x1)))) 1#(5(0(3(2(4(x1)))))) (196)
2#(1(0(5(x1)))) 1#(3(5(0(3(x1))))) (197)
2#(1(0(2(x1)))) 2#(2(x1)) (198)
2#(1(0(2(x1)))) 1#(3(0(3(2(2(x1)))))) (199)
1#(5(5(1(x1)))) 1#(3(5(1(x1)))) (202)
1#(5(1(0(x1)))) 5#(3(0(1(x1)))) (203)
1#(5(1(0(x1)))) 1#(x1) (204)
1#(2(4(2(0(x1))))) 2#(x1) (206)
1#(2(4(2(0(x1))))) 2#(1(2(x1))) (207)
1#(2(4(2(0(x1))))) 1#(2(x1)) (208)
1#(2(4(0(2(x1))))) 2#(4(1(2(x1)))) (209)
1#(2(4(0(2(x1))))) 1#(2(x1)) (210)
1#(2(0(4(5(x1))))) 5#(3(1(4(x1)))) (212)
1#(2(0(4(5(x1))))) 2#(5(3(1(4(x1))))) (213)
1#(2(0(4(5(x1))))) 1#(4(x1)) (214)
1#(2(0(4(0(x1))))) 2#(1(4(0(3(x1))))) (215)
1#(2(0(4(0(x1))))) 1#(4(0(3(x1)))) (216)
1#(0(5(1(0(x1))))) 1#(1(0(x1))) (218)
1#(0(0(0(0(x1))))) 1#(0(0(x1))) (219)
and no rules could be deleted.

1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.