Certification Problem
Input (TPDB SRS_Standard/ICFP_2010/211978)
The rewrite relation of the following TRS is considered.
0(0(1(x1))) |
→ |
0(2(3(0(1(x1))))) |
(1) |
0(0(1(x1))) |
→ |
0(4(0(5(4(1(x1)))))) |
(2) |
0(0(1(x1))) |
→ |
2(1(0(0(3(4(x1)))))) |
(3) |
0(0(1(x1))) |
→ |
4(0(5(4(0(1(x1)))))) |
(4) |
0(1(0(x1))) |
→ |
0(0(2(1(2(x1))))) |
(5) |
0(1(0(x1))) |
→ |
1(0(0(5(4(x1))))) |
(6) |
0(1(0(x1))) |
→ |
0(0(2(5(4(1(x1)))))) |
(7) |
0(1(1(x1))) |
→ |
1(0(3(4(1(x1))))) |
(8) |
0(1(1(x1))) |
→ |
5(0(3(4(1(1(x1)))))) |
(9) |
5(0(1(x1))) |
→ |
0(5(4(1(x1)))) |
(10) |
5(0(1(x1))) |
→ |
2(5(4(0(1(x1))))) |
(11) |
5(0(1(x1))) |
→ |
5(0(2(1(2(x1))))) |
(12) |
5(0(1(x1))) |
→ |
0(1(4(5(4(4(x1)))))) |
(13) |
5(0(1(x1))) |
→ |
0(5(4(1(4(4(x1)))))) |
(14) |
5(0(1(x1))) |
→ |
5(0(4(3(0(1(x1)))))) |
(15) |
5(1(0(x1))) |
→ |
5(0(2(2(1(x1))))) |
(16) |
5(1(0(x1))) |
→ |
5(0(5(4(1(x1))))) |
(17) |
5(1(0(x1))) |
→ |
0(5(0(2(2(1(x1)))))) |
(18) |
5(1(0(x1))) |
→ |
1(4(0(5(2(3(x1)))))) |
(19) |
5(1(0(x1))) |
→ |
1(5(0(4(4(2(x1)))))) |
(20) |
5(1(0(x1))) |
→ |
4(4(1(0(4(5(x1)))))) |
(21) |
5(1(1(x1))) |
→ |
1(1(5(4(x1)))) |
(22) |
5(1(1(x1))) |
→ |
5(4(1(1(x1)))) |
(23) |
5(1(1(x1))) |
→ |
1(5(3(4(1(x1))))) |
(24) |
5(1(1(x1))) |
→ |
1(1(4(5(4(4(x1)))))) |
(25) |
5(1(1(x1))) |
→ |
3(5(2(3(1(1(x1)))))) |
(26) |
5(1(1(x1))) |
→ |
4(1(2(1(5(4(x1)))))) |
(27) |
0(1(3(0(x1)))) |
→ |
0(2(0(2(1(3(x1)))))) |
(28) |
0(1(5(0(x1)))) |
→ |
0(0(5(4(1(5(x1)))))) |
(29) |
0(1(5(0(x1)))) |
→ |
0(5(4(2(1(0(x1)))))) |
(30) |
0(3(0(1(x1)))) |
→ |
0(0(4(1(3(0(x1)))))) |
(31) |
0(3(1(0(x1)))) |
→ |
0(0(2(3(1(x1))))) |
(32) |
0(3(1(1(x1)))) |
→ |
5(1(1(0(3(4(x1)))))) |
(33) |
5(0(1(0(x1)))) |
→ |
5(0(0(4(1(3(x1)))))) |
(34) |
5(1(2(0(x1)))) |
→ |
1(4(0(5(4(2(x1)))))) |
(35) |
5(1(2(0(x1)))) |
→ |
5(0(4(2(2(1(x1)))))) |
(36) |
5(1(4(0(x1)))) |
→ |
1(5(4(0(2(3(x1)))))) |
(37) |
5(1(4(0(x1)))) |
→ |
4(5(2(1(3(0(x1)))))) |
(38) |
5(1(5(1(x1)))) |
→ |
5(4(1(5(1(x1))))) |
(39) |
5(3(0(1(x1)))) |
→ |
0(1(5(2(3(x1))))) |
(40) |
5(3(1(0(x1)))) |
→ |
1(4(3(5(0(x1))))) |
(41) |
5(3(1(0(x1)))) |
→ |
1(5(0(4(3(x1))))) |
(42) |
5(3(1(0(x1)))) |
→ |
5(4(3(1(0(x1))))) |
(43) |
5(3(1(0(x1)))) |
→ |
1(3(0(4(3(5(x1)))))) |
(44) |
5(3(1(1(x1)))) |
→ |
1(1(5(3(3(4(x1)))))) |
(45) |
0(1(2(5(0(x1))))) |
→ |
1(5(4(0(2(0(x1)))))) |
(46) |
0(1(4(2(0(x1))))) |
→ |
1(0(4(2(3(0(x1)))))) |
(47) |
1(4(5(1(0(x1))))) |
→ |
5(4(2(1(1(0(x1)))))) |
(48) |
5(0(1(4(0(x1))))) |
→ |
1(4(5(4(0(0(x1)))))) |
(49) |
5(5(1(0(0(x1))))) |
→ |
5(5(0(4(1(0(x1)))))) |
(50) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by matchbox @ termCOMP 2023)
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
There are 132 ruless (increase limit for explicit display).
1.1 Monotonic Reduction Pair Processor with Usable Rules
Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[5(x1)] |
= |
x1 +
|
[4(x1)] |
= |
x1 +
|
[3(x1)] |
= |
x1 +
|
[2(x1)] |
= |
x1 +
|
[1(x1)] |
= |
x1 +
|
[0(x1)] |
= |
x1 +
|
[5#(x1)] |
= |
x1 +
|
[1#(x1)] |
= |
x1 +
|
[0#(x1)] |
= |
x1 +
|
together with the usable
rules
0(0(1(x1))) |
→ |
0(2(3(0(1(x1))))) |
(1) |
0(0(1(x1))) |
→ |
0(4(0(5(4(1(x1)))))) |
(2) |
0(0(1(x1))) |
→ |
2(1(0(0(3(4(x1)))))) |
(3) |
0(0(1(x1))) |
→ |
4(0(5(4(0(1(x1)))))) |
(4) |
0(1(0(x1))) |
→ |
0(0(2(1(2(x1))))) |
(5) |
0(1(0(x1))) |
→ |
1(0(0(5(4(x1))))) |
(6) |
0(1(0(x1))) |
→ |
0(0(2(5(4(1(x1)))))) |
(7) |
0(1(1(x1))) |
→ |
1(0(3(4(1(x1))))) |
(8) |
0(1(1(x1))) |
→ |
5(0(3(4(1(1(x1)))))) |
(9) |
5(0(1(x1))) |
→ |
0(5(4(1(x1)))) |
(10) |
5(0(1(x1))) |
→ |
2(5(4(0(1(x1))))) |
(11) |
5(0(1(x1))) |
→ |
5(0(2(1(2(x1))))) |
(12) |
5(0(1(x1))) |
→ |
0(1(4(5(4(4(x1)))))) |
(13) |
5(0(1(x1))) |
→ |
0(5(4(1(4(4(x1)))))) |
(14) |
5(0(1(x1))) |
→ |
5(0(4(3(0(1(x1)))))) |
(15) |
5(1(0(x1))) |
→ |
5(0(2(2(1(x1))))) |
(16) |
5(1(0(x1))) |
→ |
5(0(5(4(1(x1))))) |
(17) |
5(1(0(x1))) |
→ |
0(5(0(2(2(1(x1)))))) |
(18) |
5(1(0(x1))) |
→ |
1(4(0(5(2(3(x1)))))) |
(19) |
5(1(0(x1))) |
→ |
1(5(0(4(4(2(x1)))))) |
(20) |
5(1(0(x1))) |
→ |
4(4(1(0(4(5(x1)))))) |
(21) |
5(1(1(x1))) |
→ |
1(1(5(4(x1)))) |
(22) |
5(1(1(x1))) |
→ |
5(4(1(1(x1)))) |
(23) |
5(1(1(x1))) |
→ |
1(5(3(4(1(x1))))) |
(24) |
5(1(1(x1))) |
→ |
1(1(4(5(4(4(x1)))))) |
(25) |
5(1(1(x1))) |
→ |
3(5(2(3(1(1(x1)))))) |
(26) |
5(1(1(x1))) |
→ |
4(1(2(1(5(4(x1)))))) |
(27) |
0(1(3(0(x1)))) |
→ |
0(2(0(2(1(3(x1)))))) |
(28) |
0(1(5(0(x1)))) |
→ |
0(0(5(4(1(5(x1)))))) |
(29) |
0(1(5(0(x1)))) |
→ |
0(5(4(2(1(0(x1)))))) |
(30) |
0(3(0(1(x1)))) |
→ |
0(0(4(1(3(0(x1)))))) |
(31) |
0(3(1(0(x1)))) |
→ |
0(0(2(3(1(x1))))) |
(32) |
0(3(1(1(x1)))) |
→ |
5(1(1(0(3(4(x1)))))) |
(33) |
5(0(1(0(x1)))) |
→ |
5(0(0(4(1(3(x1)))))) |
(34) |
5(1(2(0(x1)))) |
→ |
1(4(0(5(4(2(x1)))))) |
(35) |
5(1(2(0(x1)))) |
→ |
5(0(4(2(2(1(x1)))))) |
(36) |
5(1(4(0(x1)))) |
→ |
1(5(4(0(2(3(x1)))))) |
(37) |
5(1(4(0(x1)))) |
→ |
4(5(2(1(3(0(x1)))))) |
(38) |
5(1(5(1(x1)))) |
→ |
5(4(1(5(1(x1))))) |
(39) |
5(3(0(1(x1)))) |
→ |
0(1(5(2(3(x1))))) |
(40) |
5(3(1(0(x1)))) |
→ |
1(4(3(5(0(x1))))) |
(41) |
5(3(1(0(x1)))) |
→ |
1(5(0(4(3(x1))))) |
(42) |
5(3(1(0(x1)))) |
→ |
5(4(3(1(0(x1))))) |
(43) |
5(3(1(0(x1)))) |
→ |
1(3(0(4(3(5(x1)))))) |
(44) |
5(3(1(1(x1)))) |
→ |
1(1(5(3(3(4(x1)))))) |
(45) |
0(1(2(5(0(x1))))) |
→ |
1(5(4(0(2(0(x1)))))) |
(46) |
0(1(4(2(0(x1))))) |
→ |
1(0(4(2(3(0(x1)))))) |
(47) |
1(4(5(1(0(x1))))) |
→ |
5(4(2(1(1(0(x1)))))) |
(48) |
5(0(1(4(0(x1))))) |
→ |
1(4(5(4(0(0(x1)))))) |
(49) |
5(5(1(0(0(x1))))) |
→ |
5(5(0(4(1(0(x1)))))) |
(50) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
5#(3(1(1(x1)))) |
→ |
5#(3(3(4(x1)))) |
(55) |
5#(3(1(1(x1)))) |
→ |
1#(5(3(3(4(x1))))) |
(56) |
5#(3(1(0(x1)))) |
→ |
5#(x1) |
(58) |
5#(3(1(0(x1)))) |
→ |
5#(0(x1)) |
(60) |
5#(3(1(0(x1)))) |
→ |
5#(0(4(3(x1)))) |
(61) |
5#(3(1(0(x1)))) |
→ |
0#(4(3(x1))) |
(65) |
5#(3(1(0(x1)))) |
→ |
0#(4(3(5(x1)))) |
(66) |
5#(3(0(1(x1)))) |
→ |
5#(2(3(x1))) |
(67) |
5#(1(4(0(x1)))) |
→ |
5#(4(0(2(3(x1))))) |
(71) |
5#(1(4(0(x1)))) |
→ |
0#(2(3(x1))) |
(75) |
5#(1(2(0(x1)))) |
→ |
5#(4(2(x1))) |
(76) |
5#(1(2(0(x1)))) |
→ |
0#(5(4(2(x1)))) |
(80) |
5#(1(1(x1))) |
→ |
5#(4(x1)) |
(82) |
5#(1(1(x1))) |
→ |
5#(4(4(x1))) |
(83) |
5#(1(1(x1))) |
→ |
5#(3(4(1(x1)))) |
(85) |
5#(1(1(x1))) |
→ |
1#(5(4(x1))) |
(87) |
5#(1(1(x1))) |
→ |
1#(4(5(4(4(x1))))) |
(89) |
5#(1(0(x1))) |
→ |
5#(x1) |
(93) |
5#(1(0(x1))) |
→ |
5#(2(3(x1))) |
(95) |
5#(1(0(x1))) |
→ |
5#(0(4(4(2(x1))))) |
(97) |
5#(1(0(x1))) |
→ |
0#(5(2(3(x1)))) |
(104) |
5#(1(0(x1))) |
→ |
0#(4(5(x1))) |
(106) |
5#(1(0(x1))) |
→ |
0#(4(4(2(x1)))) |
(107) |
5#(0(1(x1))) |
→ |
5#(4(4(x1))) |
(109) |
5#(0(1(4(0(x1))))) |
→ |
5#(4(0(0(x1)))) |
(123) |
5#(0(1(4(0(x1))))) |
→ |
0#(0(x1)) |
(125) |
0#(3(1(1(x1)))) |
→ |
1#(0(3(4(x1)))) |
(134) |
0#(3(1(1(x1)))) |
→ |
0#(3(4(x1))) |
(135) |
0#(3(0(1(x1)))) |
→ |
0#(x1) |
(140) |
0#(1(5(0(x1)))) |
→ |
5#(x1) |
(143) |
0#(1(4(2(0(x1))))) |
→ |
0#(4(2(3(0(x1))))) |
(152) |
0#(1(2(5(0(x1))))) |
→ |
5#(4(0(2(0(x1))))) |
(156) |
0#(1(2(5(0(x1))))) |
→ |
0#(2(0(x1))) |
(158) |
0#(1(1(x1))) |
→ |
0#(3(4(1(x1)))) |
(161) |
0#(1(0(x1))) |
→ |
5#(4(x1)) |
(163) |
0#(1(0(x1))) |
→ |
0#(5(4(x1))) |
(168) |
0#(1(0(x1))) |
→ |
0#(0(5(4(x1)))) |
(171) |
0#(0(1(x1))) |
→ |
0#(3(4(x1))) |
(180) |
0#(0(1(x1))) |
→ |
0#(0(3(4(x1)))) |
(182) |
and
no rules
could be deleted.
1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.