The rewrite relation of the following TRS is considered.
There are 294 ruless (increase limit for explicit display).
As carrier we take the set
{0,...,5}.
Symbols are labeled by the interpretation of their arguments using the interpretations
(modulo 6):
There are 1764 ruless (increase limit for explicit display).
There are 1739 ruless (increase limit for explicit display).
50#(54(12(35(03(x1))))) |
→ |
50#(55(03(24(12(33(x1)))))) |
(2108) |
50#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2109) |
55#(04(15(00(53(20(x1)))))) |
→ |
20#(54(15(00(x1)))) |
(2110) |
55#(04(15(00(53(20(x1)))))) |
→ |
00#(x1) |
(2111) |
40#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2112) |
40#(54(12(35(03(x1))))) |
→ |
40#(55(03(24(12(33(x1)))))) |
(2113) |
45#(02(31(41(43(20(x1)))))) |
→ |
45#(02(31(43(23(20(x1)))))) |
(2114) |
45#(02(31(41(43(21(x1)))))) |
→ |
45#(02(31(43(23(21(x1)))))) |
(2115) |
45#(02(31(41(43(22(x1)))))) |
→ |
45#(02(31(43(23(22(x1)))))) |
(2116) |
45#(02(31(41(43(23(x1)))))) |
→ |
45#(02(31(43(23(23(x1)))))) |
(2117) |
45#(02(31(41(43(24(x1)))))) |
→ |
45#(02(31(43(23(24(x1)))))) |
(2118) |
45#(02(31(41(43(25(x1)))))) |
→ |
45#(02(31(43(23(25(x1)))))) |
(2119) |
30#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2120) |
30#(54(12(35(03(x1))))) |
→ |
30#(55(03(24(12(33(x1)))))) |
(2121) |
20#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2122) |
20#(54(12(35(03(x1))))) |
→ |
20#(55(03(24(12(33(x1)))))) |
(2123) |
10#(54(12(33(20(x1))))) |
→ |
10#(54(13(20(x1)))) |
(2124) |
10#(54(12(33(21(x1))))) |
→ |
10#(54(13(21(x1)))) |
(2125) |
10#(54(12(33(22(x1))))) |
→ |
10#(54(13(22(x1)))) |
(2126) |
10#(54(12(33(23(x1))))) |
→ |
10#(54(13(23(x1)))) |
(2127) |
10#(54(12(33(24(x1))))) |
→ |
10#(54(13(24(x1)))) |
(2128) |
10#(54(12(33(25(x1))))) |
→ |
10#(54(13(25(x1)))) |
(2129) |
10#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2130) |
10#(54(12(35(03(x1))))) |
→ |
10#(55(03(24(12(33(x1)))))) |
(2131) |
10#(54(12(35(03(20(x1)))))) |
→ |
10#(53(20(x1))) |
(2132) |
10#(54(12(35(03(21(x1)))))) |
→ |
10#(53(21(x1))) |
(2133) |
10#(54(12(35(03(22(x1)))))) |
→ |
10#(53(22(x1))) |
(2134) |
10#(54(12(35(03(23(x1)))))) |
→ |
10#(53(23(x1))) |
(2135) |
10#(54(12(35(03(24(x1)))))) |
→ |
10#(53(24(x1))) |
(2136) |
10#(54(12(35(03(25(x1)))))) |
→ |
10#(53(25(x1))) |
(2137) |
00#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2138) |
00#(54(12(35(03(x1))))) |
→ |
00#(55(03(24(12(33(x1)))))) |
(2139) |
00(54(12(35(03(x1))))) |
→ |
00(55(03(24(12(33(x1)))))) |
(1066) |
10(54(12(35(03(x1))))) |
→ |
10(55(03(24(12(33(x1)))))) |
(1072) |
20(54(12(35(03(x1))))) |
→ |
20(55(03(24(12(33(x1)))))) |
(1078) |
30(54(12(35(03(x1))))) |
→ |
30(55(03(24(12(33(x1)))))) |
(1084) |
40(54(12(35(03(x1))))) |
→ |
40(55(03(24(12(33(x1)))))) |
(1090) |
50(54(12(35(03(x1))))) |
→ |
50(55(03(24(12(33(x1)))))) |
(1096) |
10(54(12(33(25(x1))))) |
→ |
12(35(04(10(54(13(25(x1))))))) |
(1106) |
10(54(12(33(24(x1))))) |
→ |
12(35(04(10(54(13(24(x1))))))) |
(1107) |
10(54(12(33(23(x1))))) |
→ |
12(35(04(10(54(13(23(x1))))))) |
(1108) |
10(54(12(33(22(x1))))) |
→ |
12(35(04(10(54(13(22(x1))))))) |
(1109) |
10(54(12(33(21(x1))))) |
→ |
12(35(04(10(54(13(21(x1))))))) |
(1110) |
10(54(12(33(20(x1))))) |
→ |
12(35(04(10(54(13(20(x1))))))) |
(1111) |
55(04(15(00(53(20(x1)))))) |
→ |
54(15(03(20(54(15(00(x1))))))) |
(1351) |
45(02(31(41(43(25(x1)))))) |
→ |
41(45(02(31(43(23(25(x1))))))) |
(1556) |
45(02(31(41(43(24(x1)))))) |
→ |
41(45(02(31(43(23(24(x1))))))) |
(1557) |
45(02(31(41(43(23(x1)))))) |
→ |
41(45(02(31(43(23(23(x1))))))) |
(1558) |
45(02(31(41(43(22(x1)))))) |
→ |
41(45(02(31(43(23(22(x1))))))) |
(1559) |
45(02(31(41(43(21(x1)))))) |
→ |
41(45(02(31(43(23(21(x1))))))) |
(1560) |
45(02(31(41(43(20(x1)))))) |
→ |
41(45(02(31(43(23(20(x1))))))) |
(1561) |
10(54(12(35(03(25(x1)))))) |
→ |
12(35(03(24(10(53(25(x1))))))) |
(1862) |
10(54(12(35(03(24(x1)))))) |
→ |
12(35(03(24(10(53(24(x1))))))) |
(1863) |
10(54(12(35(03(23(x1)))))) |
→ |
12(35(03(24(10(53(23(x1))))))) |
(1864) |
10(54(12(35(03(22(x1)))))) |
→ |
12(35(03(24(10(53(22(x1))))))) |
(1865) |
10(54(12(35(03(21(x1)))))) |
→ |
12(35(03(24(10(53(21(x1))))))) |
(1866) |
10(54(12(35(03(20(x1)))))) |
→ |
12(35(03(24(10(53(20(x1))))))) |
(1867) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
50#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2109) |
55#(04(15(00(53(20(x1)))))) |
→ |
20#(54(15(00(x1)))) |
(2110) |
55#(04(15(00(53(20(x1)))))) |
→ |
00#(x1) |
(2111) |
40#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2112) |
45#(02(31(41(43(20(x1)))))) |
→ |
45#(02(31(43(23(20(x1)))))) |
(2114) |
45#(02(31(41(43(21(x1)))))) |
→ |
45#(02(31(43(23(21(x1)))))) |
(2115) |
45#(02(31(41(43(22(x1)))))) |
→ |
45#(02(31(43(23(22(x1)))))) |
(2116) |
45#(02(31(41(43(23(x1)))))) |
→ |
45#(02(31(43(23(23(x1)))))) |
(2117) |
45#(02(31(41(43(24(x1)))))) |
→ |
45#(02(31(43(23(24(x1)))))) |
(2118) |
45#(02(31(41(43(25(x1)))))) |
→ |
45#(02(31(43(23(25(x1)))))) |
(2119) |
30#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2120) |
20#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2122) |
10#(54(12(33(20(x1))))) |
→ |
10#(54(13(20(x1)))) |
(2124) |
10#(54(12(33(21(x1))))) |
→ |
10#(54(13(21(x1)))) |
(2125) |
10#(54(12(33(22(x1))))) |
→ |
10#(54(13(22(x1)))) |
(2126) |
10#(54(12(33(23(x1))))) |
→ |
10#(54(13(23(x1)))) |
(2127) |
10#(54(12(33(24(x1))))) |
→ |
10#(54(13(24(x1)))) |
(2128) |
10#(54(12(33(25(x1))))) |
→ |
10#(54(13(25(x1)))) |
(2129) |
10#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2130) |
10#(54(12(35(03(20(x1)))))) |
→ |
10#(53(20(x1))) |
(2132) |
10#(54(12(35(03(21(x1)))))) |
→ |
10#(53(21(x1))) |
(2133) |
10#(54(12(35(03(22(x1)))))) |
→ |
10#(53(22(x1))) |
(2134) |
10#(54(12(35(03(23(x1)))))) |
→ |
10#(53(23(x1))) |
(2135) |
10#(54(12(35(03(24(x1)))))) |
→ |
10#(53(24(x1))) |
(2136) |
10#(54(12(35(03(25(x1)))))) |
→ |
10#(53(25(x1))) |
(2137) |
00#(54(12(35(03(x1))))) |
→ |
55#(03(24(12(33(x1))))) |
(2138) |
and
no rules
could be deleted.
The dependency pairs are split into 0
components.