The rewrite relation of the following TRS is considered.
0(x1) | → | 1(x1) | (1) |
0(0(x1)) | → | 0(x1) | (2) |
3(4(5(x1))) | → | 4(3(5(x1))) | (3) |
2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 1(1(0(1(0(0(0(1(0(1(0(1(1(0(0(0(1(1(1(0(0(1(1(0(0(1(1(0(1(1(0(1(0(1(1(1(1(1(1(1(1(1(1(0(0(1(0(0(1(1(1(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (4) |
1(0(1(0(1(1(1(1(0(1(0(0(1(0(1(0(0(0(0(1(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(1(0(1(1(0(1(0(1(1(1(1(0(1(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (5) |
[5(x1)] | = |
x1 +
|
||||
[4(x1)] | = |
x1 +
|
||||
[3(x1)] | = |
x1 +
|
||||
[2(x1)] | = |
x1 +
|
||||
[1(x1)] | = |
x1 +
|
||||
[0(x1)] | = |
x1 +
|
0(x1) | → | 1(x1) | (1) |
0(0(x1)) | → | 0(x1) | (2) |
2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 1(1(0(1(0(0(0(1(0(1(0(1(1(0(0(0(1(1(1(0(0(1(1(0(0(1(1(0(1(1(0(1(0(1(1(1(1(1(1(1(1(1(1(0(0(1(0(0(1(1(1(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (4) |
1(0(1(0(1(1(1(1(0(1(0(0(1(0(1(0(0(0(0(1(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(1(0(1(1(0(1(0(1(1(1(1(0(1(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (5) |
5(4(3(x1))) | → | 5(3(4(x1))) | (6) |
5#(4(3(x1))) | → | 5#(3(4(x1))) | (7) |
The dependency pairs are split into 0 components.