Certification Problem
Input (TPDB SRS_Standard/ICFP_2010/57355)
The rewrite relation of the following TRS is considered.
0(1(0(2(x1)))) |
→ |
2(0(3(1(0(x1))))) |
(1) |
0(1(0(2(x1)))) |
→ |
2(0(0(3(1(2(x1)))))) |
(2) |
0(1(0(2(x1)))) |
→ |
2(0(3(1(0(4(x1)))))) |
(3) |
0(1(0(2(x1)))) |
→ |
2(2(0(3(1(0(x1)))))) |
(4) |
0(1(0(2(x1)))) |
→ |
2(3(1(0(0(2(x1)))))) |
(5) |
0(1(0(2(x1)))) |
→ |
2(3(1(0(3(0(x1)))))) |
(6) |
0(1(0(2(x1)))) |
→ |
4(1(0(3(0(2(x1)))))) |
(7) |
0(1(0(2(x1)))) |
→ |
4(1(0(4(0(2(x1)))))) |
(8) |
0(1(4(2(x1)))) |
→ |
2(3(1(0(4(x1))))) |
(9) |
0(1(4(2(x1)))) |
→ |
2(4(0(3(1(x1))))) |
(10) |
0(1(4(2(x1)))) |
→ |
3(2(1(0(4(x1))))) |
(11) |
0(1(4(2(x1)))) |
→ |
3(2(1(4(0(x1))))) |
(12) |
0(1(4(2(x1)))) |
→ |
4(0(3(1(2(x1))))) |
(13) |
0(1(4(2(x1)))) |
→ |
4(1(0(3(2(x1))))) |
(14) |
0(1(4(2(x1)))) |
→ |
4(1(0(4(2(x1))))) |
(15) |
0(1(4(2(x1)))) |
→ |
4(1(0(5(2(x1))))) |
(16) |
0(1(4(2(x1)))) |
→ |
2(0(3(1(0(4(x1)))))) |
(17) |
0(1(4(2(x1)))) |
→ |
2(0(3(1(4(4(x1)))))) |
(18) |
0(1(4(2(x1)))) |
→ |
2(3(1(4(0(4(x1)))))) |
(19) |
0(1(4(2(x1)))) |
→ |
2(4(3(0(4(1(x1)))))) |
(20) |
0(1(4(2(x1)))) |
→ |
2(4(3(1(0(3(x1)))))) |
(21) |
0(1(4(2(x1)))) |
→ |
3(2(1(0(4(1(x1)))))) |
(22) |
0(1(4(2(x1)))) |
→ |
3(2(2(1(4(0(x1)))))) |
(23) |
0(1(4(2(x1)))) |
→ |
3(2(3(1(0(4(x1)))))) |
(24) |
0(1(4(2(x1)))) |
→ |
3(2(3(1(4(0(x1)))))) |
(25) |
0(1(4(2(x1)))) |
→ |
4(0(3(1(3(2(x1)))))) |
(26) |
0(1(4(2(x1)))) |
→ |
4(0(3(1(4(2(x1)))))) |
(27) |
0(1(4(2(x1)))) |
→ |
4(1(0(4(3(2(x1)))))) |
(28) |
0(1(4(2(x1)))) |
→ |
4(1(0(4(5(2(x1)))))) |
(29) |
0(1(4(2(x1)))) |
→ |
4(1(0(5(3(2(x1)))))) |
(30) |
0(1(4(2(x1)))) |
→ |
4(1(1(0(5(2(x1)))))) |
(31) |
0(1(4(2(x1)))) |
→ |
4(1(3(0(5(2(x1)))))) |
(32) |
0(1(4(2(x1)))) |
→ |
4(3(0(3(1(2(x1)))))) |
(33) |
0(1(4(2(x1)))) |
→ |
4(4(0(3(1(2(x1)))))) |
(34) |
0(0(1(0(2(x1))))) |
→ |
1(0(0(2(0(4(x1)))))) |
(35) |
0(0(1(0(2(x1))))) |
→ |
1(0(4(0(0(2(x1)))))) |
(36) |
0(0(1(0(2(x1))))) |
→ |
2(1(0(3(0(0(x1)))))) |
(37) |
0(0(1(4(2(x1))))) |
→ |
0(0(3(1(2(4(x1)))))) |
(38) |
0(0(1(4(2(x1))))) |
→ |
0(2(3(1(0(4(x1)))))) |
(39) |
0(0(1(4(2(x1))))) |
→ |
0(2(4(0(3(1(x1)))))) |
(40) |
0(0(1(4(2(x1))))) |
→ |
0(3(1(0(2(4(x1)))))) |
(41) |
0(0(1(4(2(x1))))) |
→ |
1(0(3(4(0(2(x1)))))) |
(42) |
0(0(1(4(2(x1))))) |
→ |
2(0(0(3(1(4(x1)))))) |
(43) |
0(0(1(4(2(x1))))) |
→ |
2(1(0(4(0(0(x1)))))) |
(44) |
0(1(2(0(2(x1))))) |
→ |
2(0(1(0(4(2(x1)))))) |
(45) |
0(1(2(4(2(x1))))) |
→ |
2(3(1(0(2(4(x1)))))) |
(46) |
0(1(2(4(2(x1))))) |
→ |
4(1(0(2(2(4(x1)))))) |
(47) |
0(1(3(4(2(x1))))) |
→ |
2(3(1(4(4(0(x1)))))) |
(48) |
0(1(3(4(2(x1))))) |
→ |
2(4(3(0(4(1(x1)))))) |
(49) |
0(1(3(4(2(x1))))) |
→ |
3(2(1(0(4(0(x1)))))) |
(50) |
0(1(3(4(2(x1))))) |
→ |
4(0(3(3(1(2(x1)))))) |
(51) |
0(1(3(4(2(x1))))) |
→ |
4(1(4(0(3(2(x1)))))) |
(52) |
0(1(4(0(2(x1))))) |
→ |
2(0(3(1(0(4(x1)))))) |
(53) |
0(1(5(0(2(x1))))) |
→ |
0(2(3(1(0(5(x1)))))) |
(54) |
0(1(5(0(2(x1))))) |
→ |
3(0(5(1(0(2(x1)))))) |
(55) |
0(1(5(0(2(x1))))) |
→ |
5(1(3(0(0(2(x1)))))) |
(56) |
0(1(5(4(2(x1))))) |
→ |
0(4(4(1(2(5(x1)))))) |
(57) |
0(1(5(4(2(x1))))) |
→ |
1(0(4(5(1(2(x1)))))) |
(58) |
0(1(5(4(2(x1))))) |
→ |
2(0(4(4(5(1(x1)))))) |
(59) |
0(1(5(4(2(x1))))) |
→ |
4(0(2(3(1(5(x1)))))) |
(60) |
0(1(5(4(2(x1))))) |
→ |
4(1(0(2(5(2(x1)))))) |
(61) |
0(1(5(4(2(x1))))) |
→ |
4(1(0(5(2(5(x1)))))) |
(62) |
0(1(5(4(2(x1))))) |
→ |
4(2(1(3(0(5(x1)))))) |
(63) |
0(1(5(4(2(x1))))) |
→ |
4(3(1(0(2(5(x1)))))) |
(64) |
0(1(5(4(2(x1))))) |
→ |
4(4(0(5(1(2(x1)))))) |
(65) |
0(1(5(4(2(x1))))) |
→ |
4(4(2(1(0(5(x1)))))) |
(66) |
0(1(5(4(2(x1))))) |
→ |
5(0(4(5(2(1(x1)))))) |
(67) |
0(1(5(4(2(x1))))) |
→ |
5(1(2(0(4(3(x1)))))) |
(68) |
0(1(5(4(2(x1))))) |
→ |
5(3(1(0(4(2(x1)))))) |
(69) |
0(2(1(4(2(x1))))) |
→ |
0(4(4(1(2(2(x1)))))) |
(70) |
0(2(1(4(2(x1))))) |
→ |
3(2(2(1(4(0(x1)))))) |
(71) |
0(2(1(4(2(x1))))) |
→ |
4(1(0(3(2(2(x1)))))) |
(72) |
5(0(1(4(2(x1))))) |
→ |
2(0(4(3(5(1(x1)))))) |
(73) |
5(0(1(4(2(x1))))) |
→ |
2(4(0(3(1(5(x1)))))) |
(74) |
5(0(1(4(2(x1))))) |
→ |
4(1(0(5(3(2(x1)))))) |
(75) |
5(0(1(4(2(x1))))) |
→ |
5(2(1(1(0(4(x1)))))) |
(76) |
5(0(2(0(2(x1))))) |
→ |
5(0(3(0(2(2(x1)))))) |
(77) |
5(0(2(0(2(x1))))) |
→ |
5(0(4(0(2(2(x1)))))) |
(78) |
5(0(2(4(2(x1))))) |
→ |
5(4(0(3(2(2(x1)))))) |
(79) |
5(1(5(0(2(x1))))) |
→ |
5(2(1(4(5(0(x1)))))) |
(80) |
5(1(5(4(2(x1))))) |
→ |
5(2(1(0(4(5(x1)))))) |
(81) |
5(4(1(4(2(x1))))) |
→ |
3(2(1(4(4(5(x1)))))) |
(82) |
5(4(1(4(2(x1))))) |
→ |
4(4(3(5(1(2(x1)))))) |
(83) |
5(4(2(0(2(x1))))) |
→ |
3(0(5(2(2(4(x1)))))) |
(84) |
5(4(2(0(2(x1))))) |
→ |
4(0(5(3(2(2(x1)))))) |
(85) |
5(4(2(0(2(x1))))) |
→ |
5(2(2(2(4(0(x1)))))) |
(86) |
5(4(2(0(2(x1))))) |
→ |
5(3(2(2(4(0(x1)))))) |
(87) |
5(4(2(0(2(x1))))) |
→ |
5(4(2(2(4(0(x1)))))) |
(88) |
5(4(2(4(2(x1))))) |
→ |
0(4(4(5(2(2(x1)))))) |
(89) |
5(4(2(4(2(x1))))) |
→ |
5(4(4(3(2(2(x1)))))) |
(90) |
5(4(5(4(2(x1))))) |
→ |
4(5(0(4(5(2(x1)))))) |
(91) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by matchbox @ termCOMP 2023)
1 Closure Under Flat Contexts
Using the flat contexts
{5(☐), 4(☐), 3(☐), 2(☐), 1(☐), 0(☐)}
We obtain the transformed TRS
There are 546 ruless (increase limit for explicit display).
1.1 Semantic Labeling
The following interpretations form a
model
of the rules.
As carrier we take the set
{0,...,5}.
Symbols are labeled by the interpretation of their arguments using the interpretations
(modulo 6):
[5(x1)] |
= |
6x1 + 0 |
[4(x1)] |
= |
6x1 + 1 |
[3(x1)] |
= |
6x1 + 2 |
[2(x1)] |
= |
6x1 + 3 |
[1(x1)] |
= |
6x1 + 4 |
[0(x1)] |
= |
6x1 + 5 |
We obtain the labeled TRS
There are 3276 ruless (increase limit for explicit display).
1.1.1 Rule Removal
Using the
matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[50(x1)] |
= |
x1 +
|
[51(x1)] |
= |
x1 +
|
[52(x1)] |
= |
x1 +
|
[53(x1)] |
= |
x1 +
|
[54(x1)] |
= |
x1 +
|
[55(x1)] |
= |
x1 +
|
[40(x1)] |
= |
x1 +
|
[41(x1)] |
= |
x1 +
|
[42(x1)] |
= |
x1 +
|
[43(x1)] |
= |
x1 +
|
[44(x1)] |
= |
x1 +
|
[45(x1)] |
= |
x1 +
|
[30(x1)] |
= |
x1 +
|
[31(x1)] |
= |
x1 +
|
[32(x1)] |
= |
x1 +
|
[33(x1)] |
= |
x1 +
|
[34(x1)] |
= |
x1 +
|
[35(x1)] |
= |
x1 +
|
[20(x1)] |
= |
x1 +
|
[21(x1)] |
= |
x1 +
|
[22(x1)] |
= |
x1 +
|
[23(x1)] |
= |
x1 +
|
[24(x1)] |
= |
x1 +
|
[25(x1)] |
= |
x1 +
|
[10(x1)] |
= |
x1 +
|
[11(x1)] |
= |
x1 +
|
[12(x1)] |
= |
x1 +
|
[13(x1)] |
= |
x1 +
|
[14(x1)] |
= |
x1 +
|
[15(x1)] |
= |
x1 +
|
[00(x1)] |
= |
x1 +
|
[01(x1)] |
= |
x1 +
|
[02(x1)] |
= |
x1 +
|
[03(x1)] |
= |
x1 +
|
[04(x1)] |
= |
x1 +
|
[05(x1)] |
= |
x1 +
|
all of the following rules can be deleted.
There are 3276 ruless (increase limit for explicit display).
1.1.1.1 R is empty
There are no rules in the TRS. Hence, it is terminating.