Certification Problem

Input (TPDB SRS_Standard/Secret_06_SRS/aprove02)

The rewrite relation of the following TRS is considered.

v(s(x1)) s(p(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x1)))))))))))))))))))) (1)
v(0(x1)) p(p(s(s(0(p(p(s(s(s(s(s(x1)))))))))))) (2)
w(s(x1)) s(s(s(s(s(s(p(p(s(s(v(p(p(s(s(s(p(p(s(s(x1)))))))))))))))))))) (3)
w(0(x1)) p(s(p(p(p(p(p(p(p(p(s(s(0(s(s(s(s(s(s(x1))))))))))))))))))) (4)
p(p(s(x1))) p(x1) (5)
p(s(x1)) x1 (6)
p(0(x1)) 0(s(s(s(s(s(s(s(p(s(x1)))))))))) (7)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 Rule Removal

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[0(x1)] = x1 +
0
[w(x1)] = x1 +
1
[v(x1)] = x1 +
1
[s(x1)] = x1 +
0
[p(x1)] = x1 +
0
all of the following rules can be deleted.
v(0(x1)) p(p(s(s(0(p(p(s(s(s(s(s(x1)))))))))))) (2)
w(0(x1)) p(s(p(p(p(p(p(p(p(p(s(s(0(s(s(s(s(s(s(x1))))))))))))))))))) (4)

1.1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
s(v(x1)) s(p(s(p(s(s(p(p(w(s(s(s(s(s(s(s(s(p(p(s(x1)))))))))))))))))))) (8)
s(w(x1)) s(s(p(p(s(s(s(p(p(v(s(s(p(p(s(s(s(s(s(s(x1)))))))))))))))))))) (9)
s(p(p(x1))) p(x1) (10)
s(p(x1)) x1 (11)
0(p(x1)) s(p(s(s(s(s(s(s(s(0(x1)))))))))) (12)

1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
0#(p(x1)) 0#(x1) (13)
0#(p(x1)) s#(0(x1)) (14)
0#(p(x1)) s#(s(0(x1))) (15)
0#(p(x1)) s#(s(s(0(x1)))) (16)
0#(p(x1)) s#(s(s(s(0(x1))))) (17)
0#(p(x1)) s#(s(s(s(s(0(x1)))))) (18)
0#(p(x1)) s#(s(s(s(s(s(0(x1))))))) (19)
0#(p(x1)) s#(s(s(s(s(s(s(0(x1)))))))) (20)
0#(p(x1)) s#(p(s(s(s(s(s(s(s(0(x1)))))))))) (21)
s#(w(x1)) s#(x1) (22)
s#(w(x1)) s#(s(x1)) (23)
s#(w(x1)) s#(s(s(x1))) (24)
s#(w(x1)) s#(s(s(s(x1)))) (25)
s#(w(x1)) s#(s(s(s(s(x1))))) (26)
s#(w(x1)) s#(s(s(s(s(s(x1)))))) (27)
s#(w(x1)) s#(s(s(p(p(v(s(s(p(p(s(s(s(s(s(s(x1)))))))))))))))) (28)
s#(w(x1)) s#(s(p(p(v(s(s(p(p(s(s(s(s(s(s(x1))))))))))))))) (29)
s#(w(x1)) s#(s(p(p(s(s(s(s(s(s(x1)))))))))) (30)
s#(w(x1)) s#(s(p(p(s(s(s(p(p(v(s(s(p(p(s(s(s(s(s(s(x1)))))))))))))))))))) (31)
s#(w(x1)) s#(p(p(v(s(s(p(p(s(s(s(s(s(s(x1)))))))))))))) (32)
s#(w(x1)) s#(p(p(s(s(s(s(s(s(x1))))))))) (33)
s#(w(x1)) s#(p(p(s(s(s(p(p(v(s(s(p(p(s(s(s(s(s(s(x1))))))))))))))))))) (34)
s#(v(x1)) s#(x1) (35)
s#(v(x1)) s#(s(s(s(s(s(s(s(p(p(s(x1))))))))))) (36)
s#(v(x1)) s#(s(s(s(s(s(s(p(p(s(x1)))))))))) (37)
s#(v(x1)) s#(s(s(s(s(s(p(p(s(x1))))))))) (38)
s#(v(x1)) s#(s(s(s(s(p(p(s(x1)))))))) (39)
s#(v(x1)) s#(s(s(s(p(p(s(x1))))))) (40)
s#(v(x1)) s#(s(s(p(p(s(x1)))))) (41)
s#(v(x1)) s#(s(p(p(w(s(s(s(s(s(s(s(s(p(p(s(x1)))))))))))))))) (42)
s#(v(x1)) s#(s(p(p(s(x1))))) (43)
s#(v(x1)) s#(p(s(s(p(p(w(s(s(s(s(s(s(s(s(p(p(s(x1)))))))))))))))))) (44)
s#(v(x1)) s#(p(s(p(s(s(p(p(w(s(s(s(s(s(s(s(s(p(p(s(x1)))))))))))))))))))) (45)
s#(v(x1)) s#(p(p(w(s(s(s(s(s(s(s(s(p(p(s(x1))))))))))))))) (46)
s#(v(x1)) s#(p(p(s(x1)))) (47)

1.1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[0(x1)] = x1 +
0
[w(x1)] = x1 +
1
[v(x1)] = x1 +
1
[s(x1)] = x1 +
0
[p(x1)] = x1 +
0
[0#(x1)] = x1 +
1
[s#(x1)] = x1 +
0
together with the usable rules
s(v(x1)) s(p(s(p(s(s(p(p(w(s(s(s(s(s(s(s(s(p(p(s(x1)))))))))))))))))))) (8)
s(w(x1)) s(s(p(p(s(s(s(p(p(v(s(s(p(p(s(s(s(s(s(s(x1)))))))))))))))))))) (9)
s(p(p(x1))) p(x1) (10)
s(p(x1)) x1 (11)
0(p(x1)) s(p(s(s(s(s(s(s(s(0(x1)))))))))) (12)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
0#(p(x1)) s#(0(x1)) (14)
0#(p(x1)) s#(s(0(x1))) (15)
0#(p(x1)) s#(s(s(0(x1)))) (16)
0#(p(x1)) s#(s(s(s(0(x1))))) (17)
0#(p(x1)) s#(s(s(s(s(0(x1)))))) (18)
0#(p(x1)) s#(s(s(s(s(s(0(x1))))))) (19)
0#(p(x1)) s#(s(s(s(s(s(s(0(x1)))))))) (20)
0#(p(x1)) s#(p(s(s(s(s(s(s(s(0(x1)))))))))) (21)
s#(w(x1)) s#(x1) (22)
s#(w(x1)) s#(s(x1)) (23)
s#(w(x1)) s#(s(s(x1))) (24)
s#(w(x1)) s#(s(s(s(x1)))) (25)
s#(w(x1)) s#(s(s(s(s(x1))))) (26)
s#(w(x1)) s#(s(s(s(s(s(x1)))))) (27)
s#(w(x1)) s#(s(p(p(s(s(s(s(s(s(x1)))))))))) (30)
s#(w(x1)) s#(p(p(s(s(s(s(s(s(x1))))))))) (33)
s#(v(x1)) s#(x1) (35)
s#(v(x1)) s#(s(s(s(s(s(s(s(p(p(s(x1))))))))))) (36)
s#(v(x1)) s#(s(s(s(s(s(s(p(p(s(x1)))))))))) (37)
s#(v(x1)) s#(s(s(s(s(s(p(p(s(x1))))))))) (38)
s#(v(x1)) s#(s(s(s(s(p(p(s(x1)))))))) (39)
s#(v(x1)) s#(s(s(s(p(p(s(x1))))))) (40)
s#(v(x1)) s#(s(s(p(p(s(x1)))))) (41)
s#(v(x1)) s#(s(p(p(s(x1))))) (43)
s#(v(x1)) s#(p(p(s(x1)))) (47)
and no rules could be deleted.

1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 2 components.