The rewrite relation of the following TRS is considered.
thrice(0(x1)) | → | p(s(p(p(p(s(s(s(0(p(s(p(s(x1))))))))))))) | (1) |
thrice(s(x1)) | → | p(p(s(s(half(p(p(s(s(p(s(sixtimes(p(s(p(p(s(s(x1)))))))))))))))))) | (2) |
half(0(x1)) | → | p(p(s(s(p(s(0(p(s(s(s(s(x1)))))))))))) | (3) |
half(s(x1)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x1))))))))))))))))) | (4) |
half(s(s(x1))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x1)))))))))))))))) | (5) |
sixtimes(0(x1)) | → | p(s(p(s(0(s(s(s(s(s(p(s(p(s(x1)))))))))))))) | (6) |
sixtimes(s(x1)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x1))))))))))))))))))))))))) | (7) |
p(p(s(x1))) | → | p(x1) | (8) |
p(s(x1)) | → | x1 | (9) |
p(0(x1)) | → | 0(s(s(s(s(x1))))) | (10) |
0(x1) | → | x1 | (11) |
[0(x1)] | = |
x1 +
|
||||
[s(x1)] | = |
x1 +
|
||||
[p(x1)] | = |
x1 +
|
||||
[sixtimes(x1)] | = |
x1 +
|
||||
[half(x1)] | = |
x1 +
|
||||
[thrice(x1)] | = |
x1 +
|
thrice(0(x1)) | → | p(s(p(p(p(s(s(s(0(p(s(p(s(x1))))))))))))) | (1) |
thrice(s(x1)) | → | p(p(s(s(half(p(p(s(s(p(s(sixtimes(p(s(p(p(s(s(x1)))))))))))))))))) | (2) |
half(0(x1)) | → | p(p(s(s(p(s(0(p(s(s(s(s(x1)))))))))))) | (3) |
sixtimes(0(x1)) | → | p(s(p(s(0(s(s(s(s(s(p(s(p(s(x1)))))))))))))) | (6) |
0(x1) | → | x1 | (11) |
s(half(x1)) | → | s(p(s(s(p(p(half(s(s(p(p(s(s(p(p(s(p(x1))))))))))))))))) | (12) |
s(s(half(x1))) | → | s(p(s(s(p(p(half(s(s(p(p(s(s(p(s(p(x1)))))))))))))))) | (13) |
s(sixtimes(x1)) | → | s(s(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))))))))))))) | (14) |
s(p(p(x1))) | → | p(x1) | (15) |
s(p(x1)) | → | x1 | (16) |
0(p(x1)) | → | s(s(s(s(0(x1))))) | (17) |
0#(p(x1)) | → | 0#(x1) | (18) |
0#(p(x1)) | → | s#(0(x1)) | (19) |
0#(p(x1)) | → | s#(s(0(x1))) | (20) |
0#(p(x1)) | → | s#(s(s(0(x1)))) | (21) |
0#(p(x1)) | → | s#(s(s(s(0(x1))))) | (22) |
s#(s(half(x1))) | → | s#(s(p(s(p(x1))))) | (23) |
s#(s(half(x1))) | → | s#(s(p(p(s(s(p(s(p(x1))))))))) | (24) |
s#(s(half(x1))) | → | s#(s(p(p(half(s(s(p(p(s(s(p(s(p(x1)))))))))))))) | (25) |
s#(s(half(x1))) | → | s#(p(x1)) | (26) |
s#(s(half(x1))) | → | s#(p(s(s(p(p(half(s(s(p(p(s(s(p(s(p(x1)))))))))))))))) | (27) |
s#(s(half(x1))) | → | s#(p(s(p(x1)))) | (28) |
s#(s(half(x1))) | → | s#(p(p(s(s(p(s(p(x1)))))))) | (29) |
s#(s(half(x1))) | → | s#(p(p(half(s(s(p(p(s(s(p(s(p(x1))))))))))))) | (30) |
s#(sixtimes(x1)) | → | s#(s(s(s(s(s(s(p(p(x1))))))))) | (31) |
s#(sixtimes(x1)) | → | s#(s(s(s(s(s(p(p(x1)))))))) | (32) |
s#(sixtimes(x1)) | → | s#(s(s(s(s(p(p(x1))))))) | (33) |
s#(sixtimes(x1)) | → | s#(s(s(s(p(p(x1)))))) | (34) |
s#(sixtimes(x1)) | → | s#(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1)))))))))))))))) | (35) |
s#(sixtimes(x1)) | → | s#(s(s(p(p(x1))))) | (36) |
s#(sixtimes(x1)) | → | s#(s(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))))))))))))) | (37) |
s#(sixtimes(x1)) | → | s#(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))) | (38) |
s#(sixtimes(x1)) | → | s#(s(p(p(x1)))) | (39) |
s#(sixtimes(x1)) | → | s#(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1)))))))))))))))))))))))) | (40) |
s#(sixtimes(x1)) | → | s#(p(s(p(p(s(s(s(s(s(s(s(p(p(x1)))))))))))))) | (41) |
s#(sixtimes(x1)) | → | s#(p(p(x1))) | (42) |
s#(sixtimes(x1)) | → | s#(p(p(s(s(s(s(s(s(s(p(p(x1)))))))))))) | (43) |
s#(sixtimes(x1)) | → | s#(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))))))))))) | (44) |
s#(sixtimes(x1)) | → | s#(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))))))) | (45) |
s#(half(x1)) | → | s#(s(p(p(s(s(p(p(s(p(x1)))))))))) | (46) |
s#(half(x1)) | → | s#(s(p(p(s(p(x1)))))) | (47) |
s#(half(x1)) | → | s#(s(p(p(half(s(s(p(p(s(s(p(p(s(p(x1))))))))))))))) | (48) |
s#(half(x1)) | → | s#(p(x1)) | (49) |
s#(half(x1)) | → | s#(p(s(s(p(p(half(s(s(p(p(s(s(p(p(s(p(x1))))))))))))))))) | (50) |
s#(half(x1)) | → | s#(p(p(s(s(p(p(s(p(x1))))))))) | (51) |
s#(half(x1)) | → | s#(p(p(s(p(x1))))) | (52) |
s#(half(x1)) | → | s#(p(p(half(s(s(p(p(s(s(p(p(s(p(x1)))))))))))))) | (53) |
[0(x1)] | = |
x1 +
|
||||
[s(x1)] | = |
x1 +
|
||||
[p(x1)] | = |
x1 +
|
||||
[sixtimes(x1)] | = |
x1 +
|
||||
[half(x1)] | = |
x1 +
|
||||
[0#(x1)] | = |
x1 +
|
||||
[s#(x1)] | = |
x1 +
|
s(half(x1)) | → | s(p(s(s(p(p(half(s(s(p(p(s(s(p(p(s(p(x1))))))))))))))))) | (12) |
s(s(half(x1))) | → | s(p(s(s(p(p(half(s(s(p(p(s(s(p(s(p(x1)))))))))))))))) | (13) |
s(sixtimes(x1)) | → | s(s(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))))))))))))) | (14) |
s(p(p(x1))) | → | p(x1) | (15) |
s(p(x1)) | → | x1 | (16) |
0(p(x1)) | → | s(s(s(s(0(x1))))) | (17) |
0#(p(x1)) | → | s#(0(x1)) | (19) |
0#(p(x1)) | → | s#(s(0(x1))) | (20) |
0#(p(x1)) | → | s#(s(s(0(x1)))) | (21) |
0#(p(x1)) | → | s#(s(s(s(0(x1))))) | (22) |
s#(s(half(x1))) | → | s#(s(p(s(p(x1))))) | (23) |
s#(s(half(x1))) | → | s#(s(p(p(s(s(p(s(p(x1))))))))) | (24) |
s#(s(half(x1))) | → | s#(p(x1)) | (26) |
s#(s(half(x1))) | → | s#(p(s(p(x1)))) | (28) |
s#(s(half(x1))) | → | s#(p(p(s(s(p(s(p(x1)))))))) | (29) |
s#(sixtimes(x1)) | → | s#(s(s(s(s(s(s(p(p(x1))))))))) | (31) |
s#(sixtimes(x1)) | → | s#(s(s(s(s(s(p(p(x1)))))))) | (32) |
s#(sixtimes(x1)) | → | s#(s(s(s(s(p(p(x1))))))) | (33) |
s#(sixtimes(x1)) | → | s#(s(s(s(p(p(x1)))))) | (34) |
s#(sixtimes(x1)) | → | s#(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1)))))))))))))))) | (35) |
s#(sixtimes(x1)) | → | s#(s(s(p(p(x1))))) | (36) |
s#(sixtimes(x1)) | → | s#(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))) | (38) |
s#(sixtimes(x1)) | → | s#(s(p(p(x1)))) | (39) |
s#(sixtimes(x1)) | → | s#(p(s(p(p(s(s(s(s(s(s(s(p(p(x1)))))))))))))) | (41) |
s#(sixtimes(x1)) | → | s#(p(p(x1))) | (42) |
s#(sixtimes(x1)) | → | s#(p(p(s(s(s(s(s(s(s(p(p(x1)))))))))))) | (43) |
s#(half(x1)) | → | s#(s(p(p(s(s(p(p(s(p(x1)))))))))) | (46) |
s#(half(x1)) | → | s#(s(p(p(s(p(x1)))))) | (47) |
s#(half(x1)) | → | s#(p(x1)) | (49) |
s#(half(x1)) | → | s#(p(p(s(s(p(p(s(p(x1))))))))) | (51) |
s#(half(x1)) | → | s#(p(p(s(p(x1))))) | (52) |
The dependency pairs are split into 2 components.
0#(p(x1)) | → | 0#(x1) | (18) |
[p(x1)] | = |
x1 +
|
||||
[0#(x1)] | = |
x1 +
|
0#(p(x1)) | → | 0#(x1) | (18) |
The dependency pairs are split into 0 components.
s#(s(half(x1))) | → | s#(s(p(p(half(s(s(p(p(s(s(p(s(p(x1)))))))))))))) | (25) |
s#(sixtimes(x1)) | → | s#(s(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))))))))))))) | (37) |
s#(sixtimes(x1)) | → | s#(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1)))))))))))))))))))))))) | (40) |
s#(half(x1)) | → | s#(s(p(p(half(s(s(p(p(s(s(p(p(s(p(x1))))))))))))))) | (48) |
[s(x1)] | = |
|
||||||||||||||||||
[p(x1)] | = |
|
||||||||||||||||||
[sixtimes(x1)] | = |
|
||||||||||||||||||
[half(x1)] | = |
|
||||||||||||||||||
[s#(x1)] | = |
|
s(half(x1)) | → | s(p(s(s(p(p(half(s(s(p(p(s(s(p(p(s(p(x1))))))))))))))))) | (12) |
s(s(half(x1))) | → | s(p(s(s(p(p(half(s(s(p(p(s(s(p(s(p(x1)))))))))))))))) | (13) |
s(sixtimes(x1)) | → | s(s(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))))))))))))) | (14) |
s(p(p(x1))) | → | p(x1) | (15) |
s(p(x1)) | → | x1 | (16) |
s#(s(half(x1))) | → | s#(s(p(p(half(s(s(p(p(s(s(p(s(p(x1)))))))))))))) | (25) |
s#(sixtimes(x1)) | → | s#(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1)))))))))))))))))))))))) | (40) |
s#(half(x1)) | → | s#(s(p(p(half(s(s(p(p(s(s(p(p(s(p(x1))))))))))))))) | (48) |
The dependency pairs are split into 1 component.
s#(sixtimes(x1)) | → | s#(s(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))))))))))))) | (37) |
[s(x1)] | = |
|
||||||||||||||||||||||||||
[p(x1)] | = |
|
||||||||||||||||||||||||||
[sixtimes(x1)] | = |
|
||||||||||||||||||||||||||
[half(x1)] | = |
|
||||||||||||||||||||||||||
[s#(x1)] | = |
|
s(half(x1)) | → | s(p(s(s(p(p(half(s(s(p(p(s(s(p(p(s(p(x1))))))))))))))))) | (12) |
s(s(half(x1))) | → | s(p(s(s(p(p(half(s(s(p(p(s(s(p(s(p(x1)))))))))))))))) | (13) |
s(sixtimes(x1)) | → | s(s(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))))))))))))) | (14) |
s(p(p(x1))) | → | p(x1) | (15) |
s(p(x1)) | → | x1 | (16) |
s#(sixtimes(x1)) | → | s#(s(s(p(p(p(s(p(sixtimes(s(s(s(p(s(p(p(s(s(s(s(s(s(s(p(p(x1))))))))))))))))))))))))) | (37) |
The dependency pairs are split into 0 components.