The rewrite relation of the following TRS is considered.
| b(b(d(d(b(b(x1)))))) | → | c(c(d(d(b(b(x1)))))) | (1) |
| b(b(a(a(c(c(x1)))))) | → | b(b(c(c(x1)))) | (2) |
| a(a(d(d(x1)))) | → | d(d(c(c(x1)))) | (3) |
| b(b(b(b(b(b(x1)))))) | → | a(a(b(b(c(c(x1)))))) | (4) |
| d(d(c(c(x1)))) | → | b(b(d(d(x1)))) | (5) |
| d(d(c(c(x1)))) | → | d(d(b(b(d(d(x1)))))) | (6) |
| d(d(a(a(c(c(x1)))))) | → | b(b(b(b(x1)))) | (7) |
| [d(x1)] | = |
x1 +
|
||||
| [c(x1)] | = |
x1 +
|
||||
| [b(x1)] | = |
x1 +
|
||||
| [a(x1)] | = |
x1 +
|
| b(b(a(a(c(c(x1)))))) | → | b(b(c(c(x1)))) | (2) |
We split R in the relative problem D/R-D and R-D, where the rules D
| a(a(d(d(x1)))) | → | d(d(c(c(x1)))) | (3) |
| b(b(b(b(b(b(x1)))))) | → | a(a(b(b(c(c(x1)))))) | (4) |
| d(d(a(a(c(c(x1)))))) | → | b(b(b(b(x1)))) | (7) |
{d(☐), c(☐), b(☐), a(☐)}
We obtain the transformed TRS| d(a(a(d(d(x1))))) | → | d(d(d(c(c(x1))))) | (8) |
| d(b(b(b(b(b(b(x1))))))) | → | d(a(a(b(b(c(c(x1))))))) | (9) |
| d(d(d(a(a(c(c(x1))))))) | → | d(b(b(b(b(x1))))) | (10) |
| c(a(a(d(d(x1))))) | → | c(d(d(c(c(x1))))) | (11) |
| c(b(b(b(b(b(b(x1))))))) | → | c(a(a(b(b(c(c(x1))))))) | (12) |
| c(d(d(a(a(c(c(x1))))))) | → | c(b(b(b(b(x1))))) | (13) |
| b(a(a(d(d(x1))))) | → | b(d(d(c(c(x1))))) | (14) |
| b(b(b(b(b(b(b(x1))))))) | → | b(a(a(b(b(c(c(x1))))))) | (15) |
| b(d(d(a(a(c(c(x1))))))) | → | b(b(b(b(b(x1))))) | (16) |
| a(a(a(d(d(x1))))) | → | a(d(d(c(c(x1))))) | (17) |
| a(b(b(b(b(b(b(x1))))))) | → | a(a(a(b(b(c(c(x1))))))) | (18) |
| a(d(d(a(a(c(c(x1))))))) | → | a(b(b(b(b(x1))))) | (19) |
| d(b(b(d(d(b(b(x1))))))) | → | d(c(c(d(d(b(b(x1))))))) | (20) |
| d(d(d(c(c(x1))))) | → | d(b(b(d(d(x1))))) | (21) |
| d(d(d(c(c(x1))))) | → | d(d(d(b(b(d(d(x1))))))) | (22) |
| c(b(b(d(d(b(b(x1))))))) | → | c(c(c(d(d(b(b(x1))))))) | (23) |
| c(d(d(c(c(x1))))) | → | c(b(b(d(d(x1))))) | (24) |
| c(d(d(c(c(x1))))) | → | c(d(d(b(b(d(d(x1))))))) | (25) |
| b(b(b(d(d(b(b(x1))))))) | → | b(c(c(d(d(b(b(x1))))))) | (26) |
| b(d(d(c(c(x1))))) | → | b(b(b(d(d(x1))))) | (27) |
| b(d(d(c(c(x1))))) | → | b(d(d(b(b(d(d(x1))))))) | (28) |
| a(b(b(d(d(b(b(x1))))))) | → | a(c(c(d(d(b(b(x1))))))) | (29) |
| a(d(d(c(c(x1))))) | → | a(b(b(d(d(x1))))) | (30) |
| a(d(d(c(c(x1))))) | → | a(d(d(b(b(d(d(x1))))))) | (31) |
As carrier we take the set {0,...,3}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 4):
| [d(x1)] | = | 4x1 + 0 |
| [c(x1)] | = | 4x1 + 1 |
| [b(x1)] | = | 4x1 + 2 |
| [a(x1)] | = | 4x1 + 3 |
| b3(a3(a0(d0(d2(x1))))) | → | b0(d0(d1(c1(c2(x1))))) | (32) |
| b3(a3(a0(d0(d0(x1))))) | → | b0(d0(d1(c1(c0(x1))))) | (33) |
| b3(a3(a0(d0(d1(x1))))) | → | b0(d0(d1(c1(c1(x1))))) | (34) |
| b3(a3(a0(d0(d3(x1))))) | → | b0(d0(d1(c1(c3(x1))))) | (35) |
| d3(a3(a0(d0(d2(x1))))) | → | d0(d0(d1(c1(c2(x1))))) | (36) |
| d3(a3(a0(d0(d0(x1))))) | → | d0(d0(d1(c1(c0(x1))))) | (37) |
| d3(a3(a0(d0(d1(x1))))) | → | d0(d0(d1(c1(c1(x1))))) | (38) |
| d3(a3(a0(d0(d3(x1))))) | → | d0(d0(d1(c1(c3(x1))))) | (39) |
| c3(a3(a0(d0(d2(x1))))) | → | c0(d0(d1(c1(c2(x1))))) | (40) |
| c3(a3(a0(d0(d0(x1))))) | → | c0(d0(d1(c1(c0(x1))))) | (41) |
| c3(a3(a0(d0(d1(x1))))) | → | c0(d0(d1(c1(c1(x1))))) | (42) |
| c3(a3(a0(d0(d3(x1))))) | → | c0(d0(d1(c1(c3(x1))))) | (43) |
| a3(a3(a0(d0(d2(x1))))) | → | a0(d0(d1(c1(c2(x1))))) | (44) |
| a3(a3(a0(d0(d0(x1))))) | → | a0(d0(d1(c1(c0(x1))))) | (45) |
| a3(a3(a0(d0(d1(x1))))) | → | a0(d0(d1(c1(c1(x1))))) | (46) |
| a3(a3(a0(d0(d3(x1))))) | → | a0(d0(d1(c1(c3(x1))))) | (47) |
| b2(b2(b2(b2(b2(b2(b2(x1))))))) | → | b3(a3(a2(b2(b1(c1(c2(x1))))))) | (48) |
| b2(b2(b2(b2(b2(b2(b0(x1))))))) | → | b3(a3(a2(b2(b1(c1(c0(x1))))))) | (49) |
| b2(b2(b2(b2(b2(b2(b1(x1))))))) | → | b3(a3(a2(b2(b1(c1(c1(x1))))))) | (50) |
| b2(b2(b2(b2(b2(b2(b3(x1))))))) | → | b3(a3(a2(b2(b1(c1(c3(x1))))))) | (51) |
| d2(b2(b2(b2(b2(b2(b2(x1))))))) | → | d3(a3(a2(b2(b1(c1(c2(x1))))))) | (52) |
| d2(b2(b2(b2(b2(b2(b0(x1))))))) | → | d3(a3(a2(b2(b1(c1(c0(x1))))))) | (53) |
| d2(b2(b2(b2(b2(b2(b1(x1))))))) | → | d3(a3(a2(b2(b1(c1(c1(x1))))))) | (54) |
| d2(b2(b2(b2(b2(b2(b3(x1))))))) | → | d3(a3(a2(b2(b1(c1(c3(x1))))))) | (55) |
| c2(b2(b2(b2(b2(b2(b2(x1))))))) | → | c3(a3(a2(b2(b1(c1(c2(x1))))))) | (56) |
| c2(b2(b2(b2(b2(b2(b0(x1))))))) | → | c3(a3(a2(b2(b1(c1(c0(x1))))))) | (57) |
| c2(b2(b2(b2(b2(b2(b1(x1))))))) | → | c3(a3(a2(b2(b1(c1(c1(x1))))))) | (58) |
| c2(b2(b2(b2(b2(b2(b3(x1))))))) | → | c3(a3(a2(b2(b1(c1(c3(x1))))))) | (59) |
| a2(b2(b2(b2(b2(b2(b2(x1))))))) | → | a3(a3(a2(b2(b1(c1(c2(x1))))))) | (60) |
| a2(b2(b2(b2(b2(b2(b0(x1))))))) | → | a3(a3(a2(b2(b1(c1(c0(x1))))))) | (61) |
| a2(b2(b2(b2(b2(b2(b1(x1))))))) | → | a3(a3(a2(b2(b1(c1(c1(x1))))))) | (62) |
| a2(b2(b2(b2(b2(b2(b3(x1))))))) | → | a3(a3(a2(b2(b1(c1(c3(x1))))))) | (63) |
| b0(d0(d3(a3(a1(c1(c2(x1))))))) | → | b2(b2(b2(b2(b2(x1))))) | (64) |
| b0(d0(d3(a3(a1(c1(c0(x1))))))) | → | b2(b2(b2(b2(b0(x1))))) | (65) |
| b0(d0(d3(a3(a1(c1(c1(x1))))))) | → | b2(b2(b2(b2(b1(x1))))) | (66) |
| b0(d0(d3(a3(a1(c1(c3(x1))))))) | → | b2(b2(b2(b2(b3(x1))))) | (67) |
| d0(d0(d3(a3(a1(c1(c2(x1))))))) | → | d2(b2(b2(b2(b2(x1))))) | (68) |
| d0(d0(d3(a3(a1(c1(c0(x1))))))) | → | d2(b2(b2(b2(b0(x1))))) | (69) |
| d0(d0(d3(a3(a1(c1(c1(x1))))))) | → | d2(b2(b2(b2(b1(x1))))) | (70) |
| d0(d0(d3(a3(a1(c1(c3(x1))))))) | → | d2(b2(b2(b2(b3(x1))))) | (71) |
| c0(d0(d3(a3(a1(c1(c2(x1))))))) | → | c2(b2(b2(b2(b2(x1))))) | (72) |
| c0(d0(d3(a3(a1(c1(c0(x1))))))) | → | c2(b2(b2(b2(b0(x1))))) | (73) |
| c0(d0(d3(a3(a1(c1(c1(x1))))))) | → | c2(b2(b2(b2(b1(x1))))) | (74) |
| c0(d0(d3(a3(a1(c1(c3(x1))))))) | → | c2(b2(b2(b2(b3(x1))))) | (75) |
| a0(d0(d3(a3(a1(c1(c2(x1))))))) | → | a2(b2(b2(b2(b2(x1))))) | (76) |
| a0(d0(d3(a3(a1(c1(c0(x1))))))) | → | a2(b2(b2(b2(b0(x1))))) | (77) |
| a0(d0(d3(a3(a1(c1(c1(x1))))))) | → | a2(b2(b2(b2(b1(x1))))) | (78) |
| a0(d0(d3(a3(a1(c1(c3(x1))))))) | → | a2(b2(b2(b2(b3(x1))))) | (79) |
| b2(b2(b0(d0(d2(b2(b2(x1))))))) | → | b1(c1(c0(d0(d2(b2(b2(x1))))))) | (80) |
| b2(b2(b0(d0(d2(b2(b0(x1))))))) | → | b1(c1(c0(d0(d2(b2(b0(x1))))))) | (81) |
| b2(b2(b0(d0(d2(b2(b1(x1))))))) | → | b1(c1(c0(d0(d2(b2(b1(x1))))))) | (82) |
| b2(b2(b0(d0(d2(b2(b3(x1))))))) | → | b1(c1(c0(d0(d2(b2(b3(x1))))))) | (83) |
| d2(b2(b0(d0(d2(b2(b2(x1))))))) | → | d1(c1(c0(d0(d2(b2(b2(x1))))))) | (84) |
| d2(b2(b0(d0(d2(b2(b0(x1))))))) | → | d1(c1(c0(d0(d2(b2(b0(x1))))))) | (85) |
| d2(b2(b0(d0(d2(b2(b1(x1))))))) | → | d1(c1(c0(d0(d2(b2(b1(x1))))))) | (86) |
| d2(b2(b0(d0(d2(b2(b3(x1))))))) | → | d1(c1(c0(d0(d2(b2(b3(x1))))))) | (87) |
| c2(b2(b0(d0(d2(b2(b2(x1))))))) | → | c1(c1(c0(d0(d2(b2(b2(x1))))))) | (88) |
| c2(b2(b0(d0(d2(b2(b0(x1))))))) | → | c1(c1(c0(d0(d2(b2(b0(x1))))))) | (89) |
| c2(b2(b0(d0(d2(b2(b1(x1))))))) | → | c1(c1(c0(d0(d2(b2(b1(x1))))))) | (90) |
| c2(b2(b0(d0(d2(b2(b3(x1))))))) | → | c1(c1(c0(d0(d2(b2(b3(x1))))))) | (91) |
| a2(b2(b0(d0(d2(b2(b2(x1))))))) | → | a1(c1(c0(d0(d2(b2(b2(x1))))))) | (92) |
| a2(b2(b0(d0(d2(b2(b0(x1))))))) | → | a1(c1(c0(d0(d2(b2(b0(x1))))))) | (93) |
| a2(b2(b0(d0(d2(b2(b1(x1))))))) | → | a1(c1(c0(d0(d2(b2(b1(x1))))))) | (94) |
| a2(b2(b0(d0(d2(b2(b3(x1))))))) | → | a1(c1(c0(d0(d2(b2(b3(x1))))))) | (95) |
| b0(d0(d1(c1(c2(x1))))) | → | b2(b2(b0(d0(d2(x1))))) | (96) |
| b0(d0(d1(c1(c0(x1))))) | → | b2(b2(b0(d0(d0(x1))))) | (97) |
| b0(d0(d1(c1(c1(x1))))) | → | b2(b2(b0(d0(d1(x1))))) | (98) |
| b0(d0(d1(c1(c3(x1))))) | → | b2(b2(b0(d0(d3(x1))))) | (99) |
| d0(d0(d1(c1(c2(x1))))) | → | d2(b2(b0(d0(d2(x1))))) | (100) |
| d0(d0(d1(c1(c0(x1))))) | → | d2(b2(b0(d0(d0(x1))))) | (101) |
| d0(d0(d1(c1(c1(x1))))) | → | d2(b2(b0(d0(d1(x1))))) | (102) |
| d0(d0(d1(c1(c3(x1))))) | → | d2(b2(b0(d0(d3(x1))))) | (103) |
| c0(d0(d1(c1(c2(x1))))) | → | c2(b2(b0(d0(d2(x1))))) | (104) |
| c0(d0(d1(c1(c0(x1))))) | → | c2(b2(b0(d0(d0(x1))))) | (105) |
| c0(d0(d1(c1(c1(x1))))) | → | c2(b2(b0(d0(d1(x1))))) | (106) |
| c0(d0(d1(c1(c3(x1))))) | → | c2(b2(b0(d0(d3(x1))))) | (107) |
| a0(d0(d1(c1(c2(x1))))) | → | a2(b2(b0(d0(d2(x1))))) | (108) |
| a0(d0(d1(c1(c0(x1))))) | → | a2(b2(b0(d0(d0(x1))))) | (109) |
| a0(d0(d1(c1(c1(x1))))) | → | a2(b2(b0(d0(d1(x1))))) | (110) |
| a0(d0(d1(c1(c3(x1))))) | → | a2(b2(b0(d0(d3(x1))))) | (111) |
| b0(d0(d1(c1(c2(x1))))) | → | b0(d0(d2(b2(b0(d0(d2(x1))))))) | (112) |
| b0(d0(d1(c1(c0(x1))))) | → | b0(d0(d2(b2(b0(d0(d0(x1))))))) | (113) |
| b0(d0(d1(c1(c1(x1))))) | → | b0(d0(d2(b2(b0(d0(d1(x1))))))) | (114) |
| b0(d0(d1(c1(c3(x1))))) | → | b0(d0(d2(b2(b0(d0(d3(x1))))))) | (115) |
| d0(d0(d1(c1(c2(x1))))) | → | d0(d0(d2(b2(b0(d0(d2(x1))))))) | (116) |
| d0(d0(d1(c1(c0(x1))))) | → | d0(d0(d2(b2(b0(d0(d0(x1))))))) | (117) |
| d0(d0(d1(c1(c1(x1))))) | → | d0(d0(d2(b2(b0(d0(d1(x1))))))) | (118) |
| d0(d0(d1(c1(c3(x1))))) | → | d0(d0(d2(b2(b0(d0(d3(x1))))))) | (119) |
| c0(d0(d1(c1(c2(x1))))) | → | c0(d0(d2(b2(b0(d0(d2(x1))))))) | (120) |
| c0(d0(d1(c1(c0(x1))))) | → | c0(d0(d2(b2(b0(d0(d0(x1))))))) | (121) |
| c0(d0(d1(c1(c1(x1))))) | → | c0(d0(d2(b2(b0(d0(d1(x1))))))) | (122) |
| c0(d0(d1(c1(c3(x1))))) | → | c0(d0(d2(b2(b0(d0(d3(x1))))))) | (123) |
| a0(d0(d1(c1(c2(x1))))) | → | a0(d0(d2(b2(b0(d0(d2(x1))))))) | (124) |
| a0(d0(d1(c1(c0(x1))))) | → | a0(d0(d2(b2(b0(d0(d0(x1))))))) | (125) |
| a0(d0(d1(c1(c1(x1))))) | → | a0(d0(d2(b2(b0(d0(d1(x1))))))) | (126) |
| a0(d0(d1(c1(c3(x1))))) | → | a0(d0(d2(b2(b0(d0(d3(x1))))))) | (127) |
| [d0(x1)] | = |
x1 +
|
||||
| [d1(x1)] | = |
x1 +
|
||||
| [d2(x1)] | = |
x1 +
|
||||
| [d3(x1)] | = |
x1 +
|
||||
| [c0(x1)] | = |
x1 +
|
||||
| [c1(x1)] | = |
x1 +
|
||||
| [c2(x1)] | = |
x1 +
|
||||
| [c3(x1)] | = |
x1 +
|
||||
| [b0(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [b2(x1)] | = |
x1 +
|
||||
| [b3(x1)] | = |
x1 +
|
||||
| [a0(x1)] | = |
x1 +
|
||||
| [a1(x1)] | = |
x1 +
|
||||
| [a2(x1)] | = |
x1 +
|
||||
| [a3(x1)] | = |
x1 +
|
| b3(a3(a0(d0(d2(x1))))) | → | b0(d0(d1(c1(c2(x1))))) | (32) |
| b3(a3(a0(d0(d0(x1))))) | → | b0(d0(d1(c1(c0(x1))))) | (33) |
| b3(a3(a0(d0(d1(x1))))) | → | b0(d0(d1(c1(c1(x1))))) | (34) |
| b3(a3(a0(d0(d3(x1))))) | → | b0(d0(d1(c1(c3(x1))))) | (35) |
| d3(a3(a0(d0(d2(x1))))) | → | d0(d0(d1(c1(c2(x1))))) | (36) |
| d3(a3(a0(d0(d0(x1))))) | → | d0(d0(d1(c1(c0(x1))))) | (37) |
| d3(a3(a0(d0(d1(x1))))) | → | d0(d0(d1(c1(c1(x1))))) | (38) |
| d3(a3(a0(d0(d3(x1))))) | → | d0(d0(d1(c1(c3(x1))))) | (39) |
| c3(a3(a0(d0(d2(x1))))) | → | c0(d0(d1(c1(c2(x1))))) | (40) |
| c3(a3(a0(d0(d0(x1))))) | → | c0(d0(d1(c1(c0(x1))))) | (41) |
| c3(a3(a0(d0(d1(x1))))) | → | c0(d0(d1(c1(c1(x1))))) | (42) |
| c3(a3(a0(d0(d3(x1))))) | → | c0(d0(d1(c1(c3(x1))))) | (43) |
| b2(b2(b2(b2(b2(b2(b2(x1))))))) | → | b3(a3(a2(b2(b1(c1(c2(x1))))))) | (48) |
| b2(b2(b2(b2(b2(b2(b0(x1))))))) | → | b3(a3(a2(b2(b1(c1(c0(x1))))))) | (49) |
| b2(b2(b2(b2(b2(b2(b1(x1))))))) | → | b3(a3(a2(b2(b1(c1(c1(x1))))))) | (50) |
| b2(b2(b2(b2(b2(b2(b3(x1))))))) | → | b3(a3(a2(b2(b1(c1(c3(x1))))))) | (51) |
| d2(b2(b2(b2(b2(b2(b2(x1))))))) | → | d3(a3(a2(b2(b1(c1(c2(x1))))))) | (52) |
| d2(b2(b2(b2(b2(b2(b0(x1))))))) | → | d3(a3(a2(b2(b1(c1(c0(x1))))))) | (53) |
| d2(b2(b2(b2(b2(b2(b3(x1))))))) | → | d3(a3(a2(b2(b1(c1(c3(x1))))))) | (55) |
| c2(b2(b2(b2(b2(b2(b2(x1))))))) | → | c3(a3(a2(b2(b1(c1(c2(x1))))))) | (56) |
| c2(b2(b2(b2(b2(b2(b0(x1))))))) | → | c3(a3(a2(b2(b1(c1(c0(x1))))))) | (57) |
| c2(b2(b2(b2(b2(b2(b3(x1))))))) | → | c3(a3(a2(b2(b1(c1(c3(x1))))))) | (59) |
| a2(b2(b2(b2(b2(b2(b2(x1))))))) | → | a3(a3(a2(b2(b1(c1(c2(x1))))))) | (60) |
| a2(b2(b2(b2(b2(b2(b0(x1))))))) | → | a3(a3(a2(b2(b1(c1(c0(x1))))))) | (61) |
| a2(b2(b2(b2(b2(b2(b3(x1))))))) | → | a3(a3(a2(b2(b1(c1(c3(x1))))))) | (63) |
| b0(d0(d3(a3(a1(c1(c1(x1))))))) | → | b2(b2(b2(b2(b1(x1))))) | (66) |
| b0(d0(d3(a3(a1(c1(c3(x1))))))) | → | b2(b2(b2(b2(b3(x1))))) | (67) |
| d0(d0(d3(a3(a1(c1(c1(x1))))))) | → | d2(b2(b2(b2(b1(x1))))) | (70) |
| d0(d0(d3(a3(a1(c1(c3(x1))))))) | → | d2(b2(b2(b2(b3(x1))))) | (71) |
| c0(d0(d3(a3(a1(c1(c1(x1))))))) | → | c2(b2(b2(b2(b1(x1))))) | (74) |
| c0(d0(d3(a3(a1(c1(c3(x1))))))) | → | c2(b2(b2(b2(b3(x1))))) | (75) |
| a0(d0(d3(a3(a1(c1(c2(x1))))))) | → | a2(b2(b2(b2(b2(x1))))) | (76) |
| a0(d0(d3(a3(a1(c1(c0(x1))))))) | → | a2(b2(b2(b2(b0(x1))))) | (77) |
| a0(d0(d3(a3(a1(c1(c1(x1))))))) | → | a2(b2(b2(b2(b1(x1))))) | (78) |
| a0(d0(d3(a3(a1(c1(c3(x1))))))) | → | a2(b2(b2(b2(b3(x1))))) | (79) |
| b2(b2(b0(d0(d2(b2(b2(x1))))))) | → | b1(c1(c0(d0(d2(b2(b2(x1))))))) | (80) |
| b2(b2(b0(d0(d2(b2(b0(x1))))))) | → | b1(c1(c0(d0(d2(b2(b0(x1))))))) | (81) |
| b2(b2(b0(d0(d2(b2(b1(x1))))))) | → | b1(c1(c0(d0(d2(b2(b1(x1))))))) | (82) |
| b2(b2(b0(d0(d2(b2(b3(x1))))))) | → | b1(c1(c0(d0(d2(b2(b3(x1))))))) | (83) |
| a0(d0(d1(c1(c2(x1))))) | → | a2(b2(b0(d0(d2(x1))))) | (108) |
| a0(d0(d1(c1(c0(x1))))) | → | a2(b2(b0(d0(d0(x1))))) | (109) |
| a0(d0(d1(c1(c1(x1))))) | → | a2(b2(b0(d0(d1(x1))))) | (110) |
| a0(d0(d1(c1(c3(x1))))) | → | a2(b2(b0(d0(d3(x1))))) | (111) |
| [d0(x1)] | = |
|
||||||||
| [d1(x1)] | = |
|
||||||||
| [d2(x1)] | = |
|
||||||||
| [d3(x1)] | = |
|
||||||||
| [c0(x1)] | = |
|
||||||||
| [c1(x1)] | = |
|
||||||||
| [c2(x1)] | = |
|
||||||||
| [c3(x1)] | = |
|
||||||||
| [b0(x1)] | = |
|
||||||||
| [b1(x1)] | = |
|
||||||||
| [b2(x1)] | = |
|
||||||||
| [b3(x1)] | = |
|
||||||||
| [a0(x1)] | = |
|
||||||||
| [a1(x1)] | = |
|
||||||||
| [a2(x1)] | = |
|
||||||||
| [a3(x1)] | = |
|
| a3(a3(a0(d0(d2(x1))))) | → | a0(d0(d1(c1(c2(x1))))) | (44) |
| a3(a3(a0(d0(d0(x1))))) | → | a0(d0(d1(c1(c0(x1))))) | (45) |
| a3(a3(a0(d0(d1(x1))))) | → | a0(d0(d1(c1(c1(x1))))) | (46) |
| a3(a3(a0(d0(d3(x1))))) | → | a0(d0(d1(c1(c3(x1))))) | (47) |
| d2(b2(b2(b2(b2(b2(b1(x1))))))) | → | d3(a3(a2(b2(b1(c1(c1(x1))))))) | (54) |
| c2(b2(b2(b2(b2(b2(b1(x1))))))) | → | c3(a3(a2(b2(b1(c1(c1(x1))))))) | (58) |
| a2(b2(b2(b2(b2(b2(b1(x1))))))) | → | a3(a3(a2(b2(b1(c1(c1(x1))))))) | (62) |
| b0(d0(d3(a3(a1(c1(c2(x1))))))) | → | b2(b2(b2(b2(b2(x1))))) | (64) |
| b0(d0(d3(a3(a1(c1(c0(x1))))))) | → | b2(b2(b2(b2(b0(x1))))) | (65) |
| d0(d0(d3(a3(a1(c1(c2(x1))))))) | → | d2(b2(b2(b2(b2(x1))))) | (68) |
| d0(d0(d3(a3(a1(c1(c0(x1))))))) | → | d2(b2(b2(b2(b0(x1))))) | (69) |
| c0(d0(d3(a3(a1(c1(c2(x1))))))) | → | c2(b2(b2(b2(b2(x1))))) | (72) |
| c0(d0(d3(a3(a1(c1(c0(x1))))))) | → | c2(b2(b2(b2(b0(x1))))) | (73) |
| a2(b2(b0(d0(d2(b2(b2(x1))))))) | → | a1(c1(c0(d0(d2(b2(b2(x1))))))) | (92) |
| a2(b2(b0(d0(d2(b2(b0(x1))))))) | → | a1(c1(c0(d0(d2(b2(b0(x1))))))) | (93) |
| a2(b2(b0(d0(d2(b2(b1(x1))))))) | → | a1(c1(c0(d0(d2(b2(b1(x1))))))) | (94) |
| a2(b2(b0(d0(d2(b2(b3(x1))))))) | → | a1(c1(c0(d0(d2(b2(b3(x1))))))) | (95) |
| [d0(x1)] | = |
x1 +
|
||||
| [d1(x1)] | = |
x1 +
|
||||
| [d2(x1)] | = |
x1 +
|
||||
| [d3(x1)] | = |
x1 +
|
||||
| [c0(x1)] | = |
x1 +
|
||||
| [c1(x1)] | = |
x1 +
|
||||
| [c2(x1)] | = |
x1 +
|
||||
| [c3(x1)] | = |
x1 +
|
||||
| [b0(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [b2(x1)] | = |
x1 +
|
||||
| [b3(x1)] | = |
x1 +
|
||||
| [a0(x1)] | = |
x1 +
|
| b0(d0(d1(c1(c2(x1))))) | → | b2(b2(b0(d0(d2(x1))))) | (96) |
| b0(d0(d1(c1(c0(x1))))) | → | b2(b2(b0(d0(d0(x1))))) | (97) |
| b0(d0(d1(c1(c1(x1))))) | → | b2(b2(b0(d0(d1(x1))))) | (98) |
| b0(d0(d1(c1(c3(x1))))) | → | b2(b2(b0(d0(d3(x1))))) | (99) |
| d0(d0(d1(c1(c3(x1))))) | → | d2(b2(b0(d0(d3(x1))))) | (103) |
| c0(d0(d1(c1(c3(x1))))) | → | c2(b2(b0(d0(d3(x1))))) | (107) |
| b0(d0(d1(c1(c3(x1))))) | → | b0(d0(d2(b2(b0(d0(d3(x1))))))) | (115) |
| d0(d0(d1(c1(c3(x1))))) | → | d0(d0(d2(b2(b0(d0(d3(x1))))))) | (119) |
| c0(d0(d1(c1(c3(x1))))) | → | c0(d0(d2(b2(b0(d0(d3(x1))))))) | (123) |
| a0(d0(d1(c1(c3(x1))))) | → | a0(d0(d2(b2(b0(d0(d3(x1))))))) | (127) |
There are no rules in the TRS. Hence, it is terminating.
We split R in the relative problem D/R-D and R-D, where the rules D
| d(d(c(c(x1)))) | → | d(d(b(b(d(d(x1)))))) | (6) |
{d(☐), c(☐), b(☐)}
We obtain the transformed TRS| d(d(d(c(c(x1))))) | → | d(d(d(b(b(d(d(x1))))))) | (22) |
| c(d(d(c(c(x1))))) | → | c(d(d(b(b(d(d(x1))))))) | (25) |
| b(d(d(c(c(x1))))) | → | b(d(d(b(b(d(d(x1))))))) | (28) |
| d(b(b(d(d(b(b(x1))))))) | → | d(c(c(d(d(b(b(x1))))))) | (20) |
| d(d(d(c(c(x1))))) | → | d(b(b(d(d(x1))))) | (21) |
| c(b(b(d(d(b(b(x1))))))) | → | c(c(c(d(d(b(b(x1))))))) | (23) |
| c(d(d(c(c(x1))))) | → | c(b(b(d(d(x1))))) | (24) |
| b(b(b(d(d(b(b(x1))))))) | → | b(c(c(d(d(b(b(x1))))))) | (26) |
| b(d(d(c(c(x1))))) | → | b(b(b(d(d(x1))))) | (27) |
{d(☐), c(☐), b(☐)}
We obtain the transformed TRS| d(d(d(d(c(c(x1)))))) | → | d(d(d(d(b(b(d(d(x1)))))))) | (128) |
| d(c(d(d(c(c(x1)))))) | → | d(c(d(d(b(b(d(d(x1)))))))) | (129) |
| d(b(d(d(c(c(x1)))))) | → | d(b(d(d(b(b(d(d(x1)))))))) | (130) |
| c(d(d(d(c(c(x1)))))) | → | c(d(d(d(b(b(d(d(x1)))))))) | (131) |
| c(c(d(d(c(c(x1)))))) | → | c(c(d(d(b(b(d(d(x1)))))))) | (132) |
| c(b(d(d(c(c(x1)))))) | → | c(b(d(d(b(b(d(d(x1)))))))) | (133) |
| b(d(d(d(c(c(x1)))))) | → | b(d(d(d(b(b(d(d(x1)))))))) | (134) |
| b(c(d(d(c(c(x1)))))) | → | b(c(d(d(b(b(d(d(x1)))))))) | (135) |
| b(b(d(d(c(c(x1)))))) | → | b(b(d(d(b(b(d(d(x1)))))))) | (136) |
| d(d(b(b(d(d(b(b(x1)))))))) | → | d(d(c(c(d(d(b(b(x1)))))))) | (137) |
| d(d(d(d(c(c(x1)))))) | → | d(d(b(b(d(d(x1)))))) | (138) |
| d(c(b(b(d(d(b(b(x1)))))))) | → | d(c(c(c(d(d(b(b(x1)))))))) | (139) |
| d(c(d(d(c(c(x1)))))) | → | d(c(b(b(d(d(x1)))))) | (140) |
| d(b(b(b(d(d(b(b(x1)))))))) | → | d(b(c(c(d(d(b(b(x1)))))))) | (141) |
| d(b(d(d(c(c(x1)))))) | → | d(b(b(b(d(d(x1)))))) | (142) |
| c(d(b(b(d(d(b(b(x1)))))))) | → | c(d(c(c(d(d(b(b(x1)))))))) | (143) |
| c(d(d(d(c(c(x1)))))) | → | c(d(b(b(d(d(x1)))))) | (144) |
| c(c(b(b(d(d(b(b(x1)))))))) | → | c(c(c(c(d(d(b(b(x1)))))))) | (145) |
| c(c(d(d(c(c(x1)))))) | → | c(c(b(b(d(d(x1)))))) | (146) |
| c(b(b(b(d(d(b(b(x1)))))))) | → | c(b(c(c(d(d(b(b(x1)))))))) | (147) |
| c(b(d(d(c(c(x1)))))) | → | c(b(b(b(d(d(x1)))))) | (148) |
| b(d(b(b(d(d(b(b(x1)))))))) | → | b(d(c(c(d(d(b(b(x1)))))))) | (149) |
| b(d(d(d(c(c(x1)))))) | → | b(d(b(b(d(d(x1)))))) | (150) |
| b(c(b(b(d(d(b(b(x1)))))))) | → | b(c(c(c(d(d(b(b(x1)))))))) | (151) |
| b(c(d(d(c(c(x1)))))) | → | b(c(b(b(d(d(x1)))))) | (152) |
| b(b(b(b(d(d(b(b(x1)))))))) | → | b(b(c(c(d(d(b(b(x1)))))))) | (153) |
| b(b(d(d(c(c(x1)))))) | → | b(b(b(b(d(d(x1)))))) | (154) |
{d(☐), c(☐), b(☐)}
We obtain the transformed TRS| d(d(d(d(d(c(c(x1))))))) | → | d(d(d(d(d(b(b(d(d(x1))))))))) | (155) |
| d(d(c(d(d(c(c(x1))))))) | → | d(d(c(d(d(b(b(d(d(x1))))))))) | (156) |
| d(d(b(d(d(c(c(x1))))))) | → | d(d(b(d(d(b(b(d(d(x1))))))))) | (157) |
| d(c(d(d(d(c(c(x1))))))) | → | d(c(d(d(d(b(b(d(d(x1))))))))) | (158) |
| d(c(c(d(d(c(c(x1))))))) | → | d(c(c(d(d(b(b(d(d(x1))))))))) | (159) |
| d(c(b(d(d(c(c(x1))))))) | → | d(c(b(d(d(b(b(d(d(x1))))))))) | (160) |
| d(b(d(d(d(c(c(x1))))))) | → | d(b(d(d(d(b(b(d(d(x1))))))))) | (161) |
| d(b(c(d(d(c(c(x1))))))) | → | d(b(c(d(d(b(b(d(d(x1))))))))) | (162) |
| d(b(b(d(d(c(c(x1))))))) | → | d(b(b(d(d(b(b(d(d(x1))))))))) | (163) |
| c(d(d(d(d(c(c(x1))))))) | → | c(d(d(d(d(b(b(d(d(x1))))))))) | (164) |
| c(d(c(d(d(c(c(x1))))))) | → | c(d(c(d(d(b(b(d(d(x1))))))))) | (165) |
| c(d(b(d(d(c(c(x1))))))) | → | c(d(b(d(d(b(b(d(d(x1))))))))) | (166) |
| c(c(d(d(d(c(c(x1))))))) | → | c(c(d(d(d(b(b(d(d(x1))))))))) | (167) |
| c(c(c(d(d(c(c(x1))))))) | → | c(c(c(d(d(b(b(d(d(x1))))))))) | (168) |
| c(c(b(d(d(c(c(x1))))))) | → | c(c(b(d(d(b(b(d(d(x1))))))))) | (169) |
| c(b(d(d(d(c(c(x1))))))) | → | c(b(d(d(d(b(b(d(d(x1))))))))) | (170) |
| c(b(c(d(d(c(c(x1))))))) | → | c(b(c(d(d(b(b(d(d(x1))))))))) | (171) |
| c(b(b(d(d(c(c(x1))))))) | → | c(b(b(d(d(b(b(d(d(x1))))))))) | (172) |
| b(d(d(d(d(c(c(x1))))))) | → | b(d(d(d(d(b(b(d(d(x1))))))))) | (173) |
| b(d(c(d(d(c(c(x1))))))) | → | b(d(c(d(d(b(b(d(d(x1))))))))) | (174) |
| b(d(b(d(d(c(c(x1))))))) | → | b(d(b(d(d(b(b(d(d(x1))))))))) | (175) |
| b(c(d(d(d(c(c(x1))))))) | → | b(c(d(d(d(b(b(d(d(x1))))))))) | (176) |
| b(c(c(d(d(c(c(x1))))))) | → | b(c(c(d(d(b(b(d(d(x1))))))))) | (177) |
| b(c(b(d(d(c(c(x1))))))) | → | b(c(b(d(d(b(b(d(d(x1))))))))) | (178) |
| b(b(d(d(d(c(c(x1))))))) | → | b(b(d(d(d(b(b(d(d(x1))))))))) | (179) |
| b(b(c(d(d(c(c(x1))))))) | → | b(b(c(d(d(b(b(d(d(x1))))))))) | (180) |
| b(b(b(d(d(c(c(x1))))))) | → | b(b(b(d(d(b(b(d(d(x1))))))))) | (181) |
| d(d(d(b(b(d(d(b(b(x1))))))))) | → | d(d(d(c(c(d(d(b(b(x1))))))))) | (182) |
| d(d(d(d(d(c(c(x1))))))) | → | d(d(d(b(b(d(d(x1))))))) | (183) |
| d(d(c(b(b(d(d(b(b(x1))))))))) | → | d(d(c(c(c(d(d(b(b(x1))))))))) | (184) |
| d(d(c(d(d(c(c(x1))))))) | → | d(d(c(b(b(d(d(x1))))))) | (185) |
| d(d(b(b(b(d(d(b(b(x1))))))))) | → | d(d(b(c(c(d(d(b(b(x1))))))))) | (186) |
| d(d(b(d(d(c(c(x1))))))) | → | d(d(b(b(b(d(d(x1))))))) | (187) |
| d(c(d(b(b(d(d(b(b(x1))))))))) | → | d(c(d(c(c(d(d(b(b(x1))))))))) | (188) |
| d(c(d(d(d(c(c(x1))))))) | → | d(c(d(b(b(d(d(x1))))))) | (189) |
| d(c(c(b(b(d(d(b(b(x1))))))))) | → | d(c(c(c(c(d(d(b(b(x1))))))))) | (190) |
| d(c(c(d(d(c(c(x1))))))) | → | d(c(c(b(b(d(d(x1))))))) | (191) |
| d(c(b(b(b(d(d(b(b(x1))))))))) | → | d(c(b(c(c(d(d(b(b(x1))))))))) | (192) |
| d(c(b(d(d(c(c(x1))))))) | → | d(c(b(b(b(d(d(x1))))))) | (193) |
| d(b(d(b(b(d(d(b(b(x1))))))))) | → | d(b(d(c(c(d(d(b(b(x1))))))))) | (194) |
| d(b(d(d(d(c(c(x1))))))) | → | d(b(d(b(b(d(d(x1))))))) | (195) |
| d(b(c(b(b(d(d(b(b(x1))))))))) | → | d(b(c(c(c(d(d(b(b(x1))))))))) | (196) |
| d(b(c(d(d(c(c(x1))))))) | → | d(b(c(b(b(d(d(x1))))))) | (197) |
| d(b(b(b(b(d(d(b(b(x1))))))))) | → | d(b(b(c(c(d(d(b(b(x1))))))))) | (198) |
| d(b(b(d(d(c(c(x1))))))) | → | d(b(b(b(b(d(d(x1))))))) | (199) |
| c(d(d(b(b(d(d(b(b(x1))))))))) | → | c(d(d(c(c(d(d(b(b(x1))))))))) | (200) |
| c(d(d(d(d(c(c(x1))))))) | → | c(d(d(b(b(d(d(x1))))))) | (201) |
| c(d(c(b(b(d(d(b(b(x1))))))))) | → | c(d(c(c(c(d(d(b(b(x1))))))))) | (202) |
| c(d(c(d(d(c(c(x1))))))) | → | c(d(c(b(b(d(d(x1))))))) | (203) |
| c(d(b(b(b(d(d(b(b(x1))))))))) | → | c(d(b(c(c(d(d(b(b(x1))))))))) | (204) |
| c(d(b(d(d(c(c(x1))))))) | → | c(d(b(b(b(d(d(x1))))))) | (205) |
| c(c(d(b(b(d(d(b(b(x1))))))))) | → | c(c(d(c(c(d(d(b(b(x1))))))))) | (206) |
| c(c(d(d(d(c(c(x1))))))) | → | c(c(d(b(b(d(d(x1))))))) | (207) |
| c(c(c(b(b(d(d(b(b(x1))))))))) | → | c(c(c(c(c(d(d(b(b(x1))))))))) | (208) |
| c(c(c(d(d(c(c(x1))))))) | → | c(c(c(b(b(d(d(x1))))))) | (209) |
| c(c(b(b(b(d(d(b(b(x1))))))))) | → | c(c(b(c(c(d(d(b(b(x1))))))))) | (210) |
| c(c(b(d(d(c(c(x1))))))) | → | c(c(b(b(b(d(d(x1))))))) | (211) |
| c(b(d(b(b(d(d(b(b(x1))))))))) | → | c(b(d(c(c(d(d(b(b(x1))))))))) | (212) |
| c(b(d(d(d(c(c(x1))))))) | → | c(b(d(b(b(d(d(x1))))))) | (213) |
| c(b(c(b(b(d(d(b(b(x1))))))))) | → | c(b(c(c(c(d(d(b(b(x1))))))))) | (214) |
| c(b(c(d(d(c(c(x1))))))) | → | c(b(c(b(b(d(d(x1))))))) | (215) |
| c(b(b(b(b(d(d(b(b(x1))))))))) | → | c(b(b(c(c(d(d(b(b(x1))))))))) | (216) |
| c(b(b(d(d(c(c(x1))))))) | → | c(b(b(b(b(d(d(x1))))))) | (217) |
| b(d(d(b(b(d(d(b(b(x1))))))))) | → | b(d(d(c(c(d(d(b(b(x1))))))))) | (218) |
| b(d(d(d(d(c(c(x1))))))) | → | b(d(d(b(b(d(d(x1))))))) | (219) |
| b(d(c(b(b(d(d(b(b(x1))))))))) | → | b(d(c(c(c(d(d(b(b(x1))))))))) | (220) |
| b(d(c(d(d(c(c(x1))))))) | → | b(d(c(b(b(d(d(x1))))))) | (221) |
| b(d(b(b(b(d(d(b(b(x1))))))))) | → | b(d(b(c(c(d(d(b(b(x1))))))))) | (222) |
| b(d(b(d(d(c(c(x1))))))) | → | b(d(b(b(b(d(d(x1))))))) | (223) |
| b(c(d(b(b(d(d(b(b(x1))))))))) | → | b(c(d(c(c(d(d(b(b(x1))))))))) | (224) |
| b(c(d(d(d(c(c(x1))))))) | → | b(c(d(b(b(d(d(x1))))))) | (225) |
| b(c(c(b(b(d(d(b(b(x1))))))))) | → | b(c(c(c(c(d(d(b(b(x1))))))))) | (226) |
| b(c(c(d(d(c(c(x1))))))) | → | b(c(c(b(b(d(d(x1))))))) | (227) |
| b(c(b(b(b(d(d(b(b(x1))))))))) | → | b(c(b(c(c(d(d(b(b(x1))))))))) | (228) |
| b(c(b(d(d(c(c(x1))))))) | → | b(c(b(b(b(d(d(x1))))))) | (229) |
| b(b(d(b(b(d(d(b(b(x1))))))))) | → | b(b(d(c(c(d(d(b(b(x1))))))))) | (230) |
| b(b(d(d(d(c(c(x1))))))) | → | b(b(d(b(b(d(d(x1))))))) | (231) |
| b(b(c(b(b(d(d(b(b(x1))))))))) | → | b(b(c(c(c(d(d(b(b(x1))))))))) | (232) |
| b(b(c(d(d(c(c(x1))))))) | → | b(b(c(b(b(d(d(x1))))))) | (233) |
| b(b(b(b(b(d(d(b(b(x1))))))))) | → | b(b(b(c(c(d(d(b(b(x1))))))))) | (234) |
| b(b(b(d(d(c(c(x1))))))) | → | b(b(b(b(b(d(d(x1))))))) | (235) |
As carrier we take the set {0,...,26}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 27):
| [d(x1)] | = | 3x1 + 0 |
| [c(x1)] | = | 3x1 + 1 |
| [b(x1)] | = | 3x1 + 2 |
There are 2187 ruless (increase limit for explicit display).
| [d0(x1)] | = |
x1 +
|
||||
| [d9(x1)] | = |
x1 +
|
||||
| [d18(x1)] | = |
x1 +
|
||||
| [d3(x1)] | = |
x1 +
|
||||
| [d12(x1)] | = |
x1 +
|
||||
| [d21(x1)] | = |
x1 +
|
||||
| [d6(x1)] | = |
x1 +
|
||||
| [d15(x1)] | = |
x1 +
|
||||
| [d24(x1)] | = |
x1 +
|
||||
| [d1(x1)] | = |
x1 +
|
||||
| [d10(x1)] | = |
x1 +
|
||||
| [d19(x1)] | = |
x1 +
|
||||
| [d4(x1)] | = |
x1 +
|
||||
| [d13(x1)] | = |
x1 +
|
||||
| [d22(x1)] | = |
x1 +
|
||||
| [d7(x1)] | = |
x1 +
|
||||
| [d16(x1)] | = |
x1 +
|
||||
| [d25(x1)] | = |
x1 +
|
||||
| [d2(x1)] | = |
x1 +
|
||||
| [d11(x1)] | = |
x1 +
|
||||
| [d20(x1)] | = |
x1 +
|
||||
| [d5(x1)] | = |
x1 +
|
||||
| [d14(x1)] | = |
x1 +
|
||||
| [d23(x1)] | = |
x1 +
|
||||
| [d8(x1)] | = |
x1 +
|
||||
| [d17(x1)] | = |
x1 +
|
||||
| [d26(x1)] | = |
x1 +
|
||||
| [c0(x1)] | = |
x1 +
|
||||
| [c9(x1)] | = |
x1 +
|
||||
| [c18(x1)] | = |
x1 +
|
||||
| [c3(x1)] | = |
x1 +
|
||||
| [c12(x1)] | = |
x1 +
|
||||
| [c21(x1)] | = |
x1 +
|
||||
| [c6(x1)] | = |
x1 +
|
||||
| [c15(x1)] | = |
x1 +
|
||||
| [c24(x1)] | = |
x1 +
|
||||
| [c1(x1)] | = |
x1 +
|
||||
| [c10(x1)] | = |
x1 +
|
||||
| [c19(x1)] | = |
x1 +
|
||||
| [c4(x1)] | = |
x1 +
|
||||
| [c13(x1)] | = |
x1 +
|
||||
| [c22(x1)] | = |
x1 +
|
||||
| [c7(x1)] | = |
x1 +
|
||||
| [c16(x1)] | = |
x1 +
|
||||
| [c25(x1)] | = |
x1 +
|
||||
| [c2(x1)] | = |
x1 +
|
||||
| [c11(x1)] | = |
x1 +
|
||||
| [c20(x1)] | = |
x1 +
|
||||
| [c5(x1)] | = |
x1 +
|
||||
| [c14(x1)] | = |
x1 +
|
||||
| [c23(x1)] | = |
x1 +
|
||||
| [c8(x1)] | = |
x1 +
|
||||
| [c17(x1)] | = |
x1 +
|
||||
| [c26(x1)] | = |
x1 +
|
||||
| [b0(x1)] | = |
x1 +
|
||||
| [b9(x1)] | = |
x1 +
|
||||
| [b18(x1)] | = |
x1 +
|
||||
| [b3(x1)] | = |
x1 +
|
||||
| [b12(x1)] | = |
x1 +
|
||||
| [b21(x1)] | = |
x1 +
|
||||
| [b6(x1)] | = |
x1 +
|
||||
| [b15(x1)] | = |
x1 +
|
||||
| [b24(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [b10(x1)] | = |
x1 +
|
||||
| [b19(x1)] | = |
x1 +
|
||||
| [b4(x1)] | = |
x1 +
|
||||
| [b13(x1)] | = |
x1 +
|
||||
| [b22(x1)] | = |
x1 +
|
||||
| [b7(x1)] | = |
x1 +
|
||||
| [b16(x1)] | = |
x1 +
|
||||
| [b25(x1)] | = |
x1 +
|
||||
| [b2(x1)] | = |
x1 +
|
||||
| [b11(x1)] | = |
x1 +
|
||||
| [b20(x1)] | = |
x1 +
|
||||
| [b5(x1)] | = |
x1 +
|
||||
| [b14(x1)] | = |
x1 +
|
||||
| [b23(x1)] | = |
x1 +
|
||||
| [b8(x1)] | = |
x1 +
|
||||
| [b17(x1)] | = |
x1 +
|
||||
| [b26(x1)] | = |
x1 +
|
There are 2127 ruless (increase limit for explicit display).
There are no rules in the TRS. Hence, it is terminating.
{d(☐), c(☐), b(☐)}
We obtain the transformed TRS| d(b(b(d(d(b(b(x1))))))) | → | d(c(c(d(d(b(b(x1))))))) | (20) |
| d(d(d(c(c(x1))))) | → | d(b(b(d(d(x1))))) | (21) |
| c(b(b(d(d(b(b(x1))))))) | → | c(c(c(d(d(b(b(x1))))))) | (23) |
| c(d(d(c(c(x1))))) | → | c(b(b(d(d(x1))))) | (24) |
| b(b(b(d(d(b(b(x1))))))) | → | b(c(c(d(d(b(b(x1))))))) | (26) |
| b(d(d(c(c(x1))))) | → | b(b(b(d(d(x1))))) | (27) |
As carrier we take the set {0,1,2}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 3):
| [d(x1)] | = | 3x1 + 0 |
| [c(x1)] | = | 3x1 + 1 |
| [b(x1)] | = | 3x1 + 2 |
| b2(b2(b0(d0(d2(b2(b2(x1))))))) | → | b1(c1(c0(d0(d2(b2(b2(x1))))))) | (80) |
| b2(b2(b0(d0(d2(b2(b0(x1))))))) | → | b1(c1(c0(d0(d2(b2(b0(x1))))))) | (81) |
| b2(b2(b0(d0(d2(b2(b1(x1))))))) | → | b1(c1(c0(d0(d2(b2(b1(x1))))))) | (82) |
| d2(b2(b0(d0(d2(b2(b2(x1))))))) | → | d1(c1(c0(d0(d2(b2(b2(x1))))))) | (84) |
| d2(b2(b0(d0(d2(b2(b0(x1))))))) | → | d1(c1(c0(d0(d2(b2(b0(x1))))))) | (85) |
| d2(b2(b0(d0(d2(b2(b1(x1))))))) | → | d1(c1(c0(d0(d2(b2(b1(x1))))))) | (86) |
| c2(b2(b0(d0(d2(b2(b2(x1))))))) | → | c1(c1(c0(d0(d2(b2(b2(x1))))))) | (88) |
| c2(b2(b0(d0(d2(b2(b0(x1))))))) | → | c1(c1(c0(d0(d2(b2(b0(x1))))))) | (89) |
| c2(b2(b0(d0(d2(b2(b1(x1))))))) | → | c1(c1(c0(d0(d2(b2(b1(x1))))))) | (90) |
| b0(d0(d1(c1(c2(x1))))) | → | b2(b2(b0(d0(d2(x1))))) | (96) |
| b0(d0(d1(c1(c0(x1))))) | → | b2(b2(b0(d0(d0(x1))))) | (97) |
| b0(d0(d1(c1(c1(x1))))) | → | b2(b2(b0(d0(d1(x1))))) | (98) |
| d0(d0(d1(c1(c2(x1))))) | → | d2(b2(b0(d0(d2(x1))))) | (100) |
| d0(d0(d1(c1(c0(x1))))) | → | d2(b2(b0(d0(d0(x1))))) | (101) |
| d0(d0(d1(c1(c1(x1))))) | → | d2(b2(b0(d0(d1(x1))))) | (102) |
| c0(d0(d1(c1(c2(x1))))) | → | c2(b2(b0(d0(d2(x1))))) | (104) |
| c0(d0(d1(c1(c0(x1))))) | → | c2(b2(b0(d0(d0(x1))))) | (105) |
| c0(d0(d1(c1(c1(x1))))) | → | c2(b2(b0(d0(d1(x1))))) | (106) |
| [d0(x1)] | = |
x1 +
|
||||
| [d1(x1)] | = |
x1 +
|
||||
| [d2(x1)] | = |
x1 +
|
||||
| [c0(x1)] | = |
x1 +
|
||||
| [c1(x1)] | = |
x1 +
|
||||
| [c2(x1)] | = |
x1 +
|
||||
| [b0(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [b2(x1)] | = |
x1 +
|
| b2(b2(b0(d0(d2(b2(b2(x1))))))) | → | b1(c1(c0(d0(d2(b2(b2(x1))))))) | (80) |
| b2(b2(b0(d0(d2(b2(b0(x1))))))) | → | b1(c1(c0(d0(d2(b2(b0(x1))))))) | (81) |
| b2(b2(b0(d0(d2(b2(b1(x1))))))) | → | b1(c1(c0(d0(d2(b2(b1(x1))))))) | (82) |
| b0(d0(d1(c1(c2(x1))))) | → | b2(b2(b0(d0(d2(x1))))) | (96) |
| b0(d0(d1(c1(c0(x1))))) | → | b2(b2(b0(d0(d0(x1))))) | (97) |
| b0(d0(d1(c1(c1(x1))))) | → | b2(b2(b0(d0(d1(x1))))) | (98) |
| [d0(x1)] | = |
|
||||||||
| [d1(x1)] | = |
|
||||||||
| [d2(x1)] | = |
|
||||||||
| [c0(x1)] | = |
|
||||||||
| [c1(x1)] | = |
|
||||||||
| [c2(x1)] | = |
|
||||||||
| [b0(x1)] | = |
|
||||||||
| [b1(x1)] | = |
|
||||||||
| [b2(x1)] | = |
|
| d0(d0(d1(c1(c2(x1))))) | → | d2(b2(b0(d0(d2(x1))))) | (100) |
| d0(d0(d1(c1(c0(x1))))) | → | d2(b2(b0(d0(d0(x1))))) | (101) |
| d0(d0(d1(c1(c1(x1))))) | → | d2(b2(b0(d0(d1(x1))))) | (102) |
| c0(d0(d1(c1(c2(x1))))) | → | c2(b2(b0(d0(d2(x1))))) | (104) |
| c0(d0(d1(c1(c0(x1))))) | → | c2(b2(b0(d0(d0(x1))))) | (105) |
| c0(d0(d1(c1(c1(x1))))) | → | c2(b2(b0(d0(d1(x1))))) | (106) |
| [d0(x1)] | = |
x1 +
|
||||
| [d1(x1)] | = |
x1 +
|
||||
| [d2(x1)] | = |
x1 +
|
||||
| [c0(x1)] | = |
x1 +
|
||||
| [c1(x1)] | = |
x1 +
|
||||
| [c2(x1)] | = |
x1 +
|
||||
| [b0(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [b2(x1)] | = |
x1 +
|
| d2(b2(b0(d0(d2(b2(b2(x1))))))) | → | d1(c1(c0(d0(d2(b2(b2(x1))))))) | (84) |
| d2(b2(b0(d0(d2(b2(b0(x1))))))) | → | d1(c1(c0(d0(d2(b2(b0(x1))))))) | (85) |
| d2(b2(b0(d0(d2(b2(b1(x1))))))) | → | d1(c1(c0(d0(d2(b2(b1(x1))))))) | (86) |
| c2(b2(b0(d0(d2(b2(b2(x1))))))) | → | c1(c1(c0(d0(d2(b2(b2(x1))))))) | (88) |
| c2(b2(b0(d0(d2(b2(b0(x1))))))) | → | c1(c1(c0(d0(d2(b2(b0(x1))))))) | (89) |
| c2(b2(b0(d0(d2(b2(b1(x1))))))) | → | c1(c1(c0(d0(d2(b2(b1(x1))))))) | (90) |
There are no rules in the TRS. Hence, it is terminating.