The rewrite relation of the following TRS is considered.
b(a(b(a(a(a(x1)))))) | → | a(a(a(b(a(b(a(b(a(x1))))))))) | (1) |
{b(☐), a(☐)}
We obtain the transformed TRSb(b(a(b(a(a(a(x1))))))) | → | b(a(a(a(b(a(b(a(b(a(x1)))))))))) | (2) |
a(b(a(b(a(a(a(x1))))))) | → | a(a(a(a(b(a(b(a(b(a(x1)))))))))) | (3) |
As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
[b(x1)] | = | 2x1 + 0 |
[a(x1)] | = | 2x1 + 1 |
b0(b1(a0(b1(a1(a1(a0(x1))))))) | → | b1(a1(a1(a0(b1(a0(b1(a0(b1(a0(x1)))))))))) | (4) |
b0(b1(a0(b1(a1(a1(a1(x1))))))) | → | b1(a1(a1(a0(b1(a0(b1(a0(b1(a1(x1)))))))))) | (5) |
a0(b1(a0(b1(a1(a1(a0(x1))))))) | → | a1(a1(a1(a0(b1(a0(b1(a0(b1(a0(x1)))))))))) | (6) |
a0(b1(a0(b1(a1(a1(a1(x1))))))) | → | a1(a1(a1(a0(b1(a0(b1(a0(b1(a1(x1)))))))))) | (7) |
[b0(x1)] | = |
x1 +
|
||||
[b1(x1)] | = |
x1 +
|
||||
[a0(x1)] | = |
x1 +
|
||||
[a1(x1)] | = |
x1 +
|
b0(b1(a0(b1(a1(a1(a0(x1))))))) | → | b1(a1(a1(a0(b1(a0(b1(a0(b1(a0(x1)))))))))) | (4) |
b0(b1(a0(b1(a1(a1(a1(x1))))))) | → | b1(a1(a1(a0(b1(a0(b1(a0(b1(a1(x1)))))))))) | (5) |
a0(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (8) |
a1(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (9) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (10) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(b1(a0(b1(a0(a1(a1(a1(x1)))))))) | (11) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(b1(a0(a1(a1(a1(x1)))))) | (12) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (13) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (14) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (15) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (16) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(b1(a0(b1(a0(a1(a1(a1(x1)))))))) | (17) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(b1(a0(a1(a1(a1(x1)))))) | (18) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (19) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (20) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (21) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (22) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (23) |
The dependency pairs are split into 1 component.
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (19) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (13) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (14) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (20) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (22) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (23) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (15) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (16) |
[b1(x1)] | = |
|
||||||||||||||||||
[a0(x1)] | = |
|
||||||||||||||||||
[a1(x1)] | = |
|
||||||||||||||||||
[a0#(x1)] | = |
|
||||||||||||||||||
[a1#(x1)] | = |
|
a0(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (8) |
a1(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (9) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (19) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (13) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (14) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (20) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (22) |
a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (23) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (15) |
a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (16) |
The dependency pairs are split into 0 components.