Certification Problem
Input (TPDB SRS_Standard/Zantema_04/z091)
The rewrite relation of the following TRS is considered.
r0(0(x1)) |
→ |
0(r0(x1)) |
(1) |
r0(1(x1)) |
→ |
1(r0(x1)) |
(2) |
r0(m(x1)) |
→ |
m(r0(x1)) |
(3) |
r1(0(x1)) |
→ |
0(r1(x1)) |
(4) |
r1(1(x1)) |
→ |
1(r1(x1)) |
(5) |
r1(m(x1)) |
→ |
m(r1(x1)) |
(6) |
r0(b(x1)) |
→ |
qr(0(b(x1))) |
(7) |
r1(b(x1)) |
→ |
qr(1(b(x1))) |
(8) |
0(qr(x1)) |
→ |
qr(0(x1)) |
(9) |
1(qr(x1)) |
→ |
qr(1(x1)) |
(10) |
m(qr(x1)) |
→ |
ql(m(x1)) |
(11) |
0(ql(x1)) |
→ |
ql(0(x1)) |
(12) |
1(ql(x1)) |
→ |
ql(1(x1)) |
(13) |
b(ql(0(x1))) |
→ |
0(b(r0(x1))) |
(14) |
b(ql(1(x1))) |
→ |
1(b(r1(x1))) |
(15) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by matchbox @ termCOMP 2023)
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
r0#(1(x1)) |
→ |
r0#(x1) |
(16) |
r0#(1(x1)) |
→ |
1#(r0(x1)) |
(17) |
r0#(0(x1)) |
→ |
r0#(x1) |
(18) |
r0#(0(x1)) |
→ |
0#(r0(x1)) |
(19) |
r0#(m(x1)) |
→ |
r0#(x1) |
(20) |
r0#(m(x1)) |
→ |
m#(r0(x1)) |
(21) |
r0#(b(x1)) |
→ |
0#(b(x1)) |
(22) |
r1#(1(x1)) |
→ |
r1#(x1) |
(23) |
r1#(1(x1)) |
→ |
1#(r1(x1)) |
(24) |
r1#(0(x1)) |
→ |
r1#(x1) |
(25) |
r1#(0(x1)) |
→ |
0#(r1(x1)) |
(26) |
r1#(m(x1)) |
→ |
r1#(x1) |
(27) |
r1#(m(x1)) |
→ |
m#(r1(x1)) |
(28) |
r1#(b(x1)) |
→ |
1#(b(x1)) |
(29) |
1#(ql(x1)) |
→ |
1#(x1) |
(30) |
1#(qr(x1)) |
→ |
1#(x1) |
(31) |
0#(ql(x1)) |
→ |
0#(x1) |
(32) |
0#(qr(x1)) |
→ |
0#(x1) |
(33) |
m#(qr(x1)) |
→ |
m#(x1) |
(34) |
b#(ql(1(x1))) |
→ |
r1#(x1) |
(35) |
b#(ql(1(x1))) |
→ |
1#(b(r1(x1))) |
(36) |
b#(ql(1(x1))) |
→ |
b#(r1(x1)) |
(37) |
b#(ql(0(x1))) |
→ |
r0#(x1) |
(38) |
b#(ql(0(x1))) |
→ |
0#(b(r0(x1))) |
(39) |
b#(ql(0(x1))) |
→ |
b#(r0(x1)) |
(40) |
1.1 Monotonic Reduction Pair Processor with Usable Rules
Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[r0(x1)] |
= |
x1 +
|
[r1(x1)] |
= |
x1 +
|
[ql(x1)] |
= |
x1 +
|
[qr(x1)] |
= |
x1 +
|
[1(x1)] |
= |
x1 +
|
[0(x1)] |
= |
x1 +
|
[m(x1)] |
= |
x1 +
|
[b(x1)] |
= |
x1 +
|
[r0#(x1)] |
= |
x1 +
|
[r1#(x1)] |
= |
x1 +
|
[1#(x1)] |
= |
x1 +
|
[0#(x1)] |
= |
x1 +
|
[m#(x1)] |
= |
x1 +
|
[b#(x1)] |
= |
x1 +
|
together with the usable
rules
r0(0(x1)) |
→ |
0(r0(x1)) |
(1) |
r0(1(x1)) |
→ |
1(r0(x1)) |
(2) |
r0(m(x1)) |
→ |
m(r0(x1)) |
(3) |
r1(0(x1)) |
→ |
0(r1(x1)) |
(4) |
r1(1(x1)) |
→ |
1(r1(x1)) |
(5) |
r1(m(x1)) |
→ |
m(r1(x1)) |
(6) |
r0(b(x1)) |
→ |
qr(0(b(x1))) |
(7) |
r1(b(x1)) |
→ |
qr(1(b(x1))) |
(8) |
0(qr(x1)) |
→ |
qr(0(x1)) |
(9) |
1(qr(x1)) |
→ |
qr(1(x1)) |
(10) |
m(qr(x1)) |
→ |
ql(m(x1)) |
(11) |
0(ql(x1)) |
→ |
ql(0(x1)) |
(12) |
1(ql(x1)) |
→ |
ql(1(x1)) |
(13) |
b(ql(0(x1))) |
→ |
0(b(r0(x1))) |
(14) |
b(ql(1(x1))) |
→ |
1(b(r1(x1))) |
(15) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
r0#(1(x1)) |
→ |
1#(r0(x1)) |
(17) |
r0#(0(x1)) |
→ |
0#(r0(x1)) |
(19) |
r0#(m(x1)) |
→ |
r0#(x1) |
(20) |
r0#(m(x1)) |
→ |
m#(r0(x1)) |
(21) |
r0#(b(x1)) |
→ |
0#(b(x1)) |
(22) |
r1#(1(x1)) |
→ |
1#(r1(x1)) |
(24) |
r1#(0(x1)) |
→ |
0#(r1(x1)) |
(26) |
r1#(m(x1)) |
→ |
r1#(x1) |
(27) |
r1#(m(x1)) |
→ |
m#(r1(x1)) |
(28) |
r1#(b(x1)) |
→ |
1#(b(x1)) |
(29) |
1#(ql(x1)) |
→ |
1#(x1) |
(30) |
1#(qr(x1)) |
→ |
1#(x1) |
(31) |
0#(ql(x1)) |
→ |
0#(x1) |
(32) |
0#(qr(x1)) |
→ |
0#(x1) |
(33) |
m#(qr(x1)) |
→ |
m#(x1) |
(34) |
b#(ql(1(x1))) |
→ |
r1#(x1) |
(35) |
b#(ql(1(x1))) |
→ |
1#(b(r1(x1))) |
(36) |
b#(ql(0(x1))) |
→ |
r0#(x1) |
(38) |
b#(ql(0(x1))) |
→ |
0#(b(r0(x1))) |
(39) |
and
no rules
could be deleted.
1.1.1 Dependency Graph Processor
The dependency pairs are split into 3
components.
-
The
1st
component contains the
pair
r0#(1(x1)) |
→ |
r0#(x1) |
(16) |
r0#(0(x1)) |
→ |
r0#(x1) |
(18) |
1.1.1.1 Monotonic Reduction Pair Processor with Usable Rules
Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[1(x1)] |
= |
x1 +
|
[0(x1)] |
= |
x1 +
|
[r0#(x1)] |
= |
x1 +
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
r0#(1(x1)) |
→ |
r0#(x1) |
(16) |
r0#(0(x1)) |
→ |
r0#(x1) |
(18) |
and
no rules
could be deleted.
1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
2nd
component contains the
pair
r1#(1(x1)) |
→ |
r1#(x1) |
(23) |
r1#(0(x1)) |
→ |
r1#(x1) |
(25) |
1.1.1.2 Monotonic Reduction Pair Processor with Usable Rules
Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[1(x1)] |
= |
x1 +
|
[0(x1)] |
= |
x1 +
|
[r1#(x1)] |
= |
x1 +
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
r1#(1(x1)) |
→ |
r1#(x1) |
(23) |
r1#(0(x1)) |
→ |
r1#(x1) |
(25) |
and
no rules
could be deleted.
1.1.1.2.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
3rd
component contains the
pair
b#(ql(1(x1))) |
→ |
b#(r1(x1)) |
(37) |
b#(ql(0(x1))) |
→ |
b#(r0(x1)) |
(40) |
1.1.1.3 Reduction Pair Processor with Usable Rules
Using the matrix interpretations of dimension 1 with strict dimension 1 over the naturals
[r0(x1)] |
= |
· x1 +
|
[r1(x1)] |
= |
· x1 +
|
[ql(x1)] |
= |
· x1 +
|
[qr(x1)] |
= |
· x1 +
|
[1(x1)] |
= |
· x1 +
|
[0(x1)] |
= |
· x1 +
|
[m(x1)] |
= |
· x1 +
|
[b(x1)] |
= |
· x1 +
|
[b#(x1)] |
= |
· x1 +
|
together with the usable
rules
r0(0(x1)) |
→ |
0(r0(x1)) |
(1) |
r0(1(x1)) |
→ |
1(r0(x1)) |
(2) |
r0(m(x1)) |
→ |
m(r0(x1)) |
(3) |
r1(0(x1)) |
→ |
0(r1(x1)) |
(4) |
r1(1(x1)) |
→ |
1(r1(x1)) |
(5) |
r1(m(x1)) |
→ |
m(r1(x1)) |
(6) |
r0(b(x1)) |
→ |
qr(0(b(x1))) |
(7) |
r1(b(x1)) |
→ |
qr(1(b(x1))) |
(8) |
0(qr(x1)) |
→ |
qr(0(x1)) |
(9) |
1(qr(x1)) |
→ |
qr(1(x1)) |
(10) |
m(qr(x1)) |
→ |
ql(m(x1)) |
(11) |
0(ql(x1)) |
→ |
ql(0(x1)) |
(12) |
1(ql(x1)) |
→ |
ql(1(x1)) |
(13) |
b(ql(0(x1))) |
→ |
0(b(r0(x1))) |
(14) |
b(ql(1(x1))) |
→ |
1(b(r1(x1))) |
(15) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pair
b#(ql(0(x1))) |
→ |
b#(r0(x1)) |
(40) |
could be deleted.
1.1.1.3.1 Dependency Graph Processor
The dependency pairs are split into 1
component.