Certification Problem

Input (TPDB SRS_Standard/Zantema_04/z120)

The rewrite relation of the following TRS is considered.

c(c(c(a(x1)))) d(d(x1)) (1)
d(b(x1)) c(c(x1)) (2)
b(c(x1)) b(a(c(x1))) (3)
c(x1) a(a(x1)) (4)
d(x1) b(c(x1)) (5)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 Rule Removal

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[d(x1)] = x1 +
1
[c(x1)] = x1 +
2/3
[b(x1)] = x1 +
1/3
[a(x1)] = x1 +
0
all of the following rules can be deleted.
c(x1) a(a(x1)) (4)

1.1 Closure Under Flat Contexts

Using the flat contexts

{d(), c(), b(), a()}

We obtain the transformed TRS
d(c(c(c(a(x1))))) d(d(d(x1))) (6)
d(d(b(x1))) d(c(c(x1))) (7)
d(b(c(x1))) d(b(a(c(x1)))) (8)
d(d(x1)) d(b(c(x1))) (9)
c(c(c(c(a(x1))))) c(d(d(x1))) (10)
c(d(b(x1))) c(c(c(x1))) (11)
c(b(c(x1))) c(b(a(c(x1)))) (12)
c(d(x1)) c(b(c(x1))) (13)
b(c(c(c(a(x1))))) b(d(d(x1))) (14)
b(d(b(x1))) b(c(c(x1))) (15)
b(b(c(x1))) b(b(a(c(x1)))) (16)
b(d(x1)) b(b(c(x1))) (17)
a(c(c(c(a(x1))))) a(d(d(x1))) (18)
a(d(b(x1))) a(c(c(x1))) (19)
a(b(c(x1))) a(b(a(c(x1)))) (20)
a(d(x1)) a(b(c(x1))) (21)

1.1.1 Semantic Labeling

The following interpretations form a model of the rules.

As carrier we take the set {0,...,3}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 4):

[d(x1)] = 4x1 + 0
[c(x1)] = 4x1 + 1
[b(x1)] = 4x1 + 2
[a(x1)] = 4x1 + 3

We obtain the labeled TRS
c1(c1(c1(c3(a1(x1))))) c0(d0(d1(x1))) (22)
c1(c1(c1(c3(a3(x1))))) c0(d0(d3(x1))) (23)
c1(c1(c1(c3(a0(x1))))) c0(d0(d0(x1))) (24)
c1(c1(c1(c3(a2(x1))))) c0(d0(d2(x1))) (25)
a1(c1(c1(c3(a1(x1))))) a0(d0(d1(x1))) (26)
a1(c1(c1(c3(a3(x1))))) a0(d0(d3(x1))) (27)
a1(c1(c1(c3(a0(x1))))) a0(d0(d0(x1))) (28)
a1(c1(c1(c3(a2(x1))))) a0(d0(d2(x1))) (29)
d1(c1(c1(c3(a1(x1))))) d0(d0(d1(x1))) (30)
d1(c1(c1(c3(a3(x1))))) d0(d0(d3(x1))) (31)
d1(c1(c1(c3(a0(x1))))) d0(d0(d0(x1))) (32)
d1(c1(c1(c3(a2(x1))))) d0(d0(d2(x1))) (33)
b1(c1(c1(c3(a1(x1))))) b0(d0(d1(x1))) (34)
b1(c1(c1(c3(a3(x1))))) b0(d0(d3(x1))) (35)
b1(c1(c1(c3(a0(x1))))) b0(d0(d0(x1))) (36)
b1(c1(c1(c3(a2(x1))))) b0(d0(d2(x1))) (37)
c0(d2(b1(x1))) c1(c1(c1(x1))) (38)
c0(d2(b3(x1))) c1(c1(c3(x1))) (39)
c0(d2(b0(x1))) c1(c1(c0(x1))) (40)
c0(d2(b2(x1))) c1(c1(c2(x1))) (41)
a0(d2(b1(x1))) a1(c1(c1(x1))) (42)
a0(d2(b3(x1))) a1(c1(c3(x1))) (43)
a0(d2(b0(x1))) a1(c1(c0(x1))) (44)
a0(d2(b2(x1))) a1(c1(c2(x1))) (45)
d0(d2(b1(x1))) d1(c1(c1(x1))) (46)
d0(d2(b3(x1))) d1(c1(c3(x1))) (47)
d0(d2(b0(x1))) d1(c1(c0(x1))) (48)
d0(d2(b2(x1))) d1(c1(c2(x1))) (49)
b0(d2(b1(x1))) b1(c1(c1(x1))) (50)
b0(d2(b3(x1))) b1(c1(c3(x1))) (51)
b0(d2(b0(x1))) b1(c1(c0(x1))) (52)
b0(d2(b2(x1))) b1(c1(c2(x1))) (53)
c2(b1(c1(x1))) c2(b3(a1(c1(x1)))) (54)
c2(b1(c3(x1))) c2(b3(a1(c3(x1)))) (55)
c2(b1(c0(x1))) c2(b3(a1(c0(x1)))) (56)
c2(b1(c2(x1))) c2(b3(a1(c2(x1)))) (57)
a2(b1(c1(x1))) a2(b3(a1(c1(x1)))) (58)
a2(b1(c3(x1))) a2(b3(a1(c3(x1)))) (59)
a2(b1(c0(x1))) a2(b3(a1(c0(x1)))) (60)
a2(b1(c2(x1))) a2(b3(a1(c2(x1)))) (61)
d2(b1(c1(x1))) d2(b3(a1(c1(x1)))) (62)
d2(b1(c3(x1))) d2(b3(a1(c3(x1)))) (63)
d2(b1(c0(x1))) d2(b3(a1(c0(x1)))) (64)
d2(b1(c2(x1))) d2(b3(a1(c2(x1)))) (65)
b2(b1(c1(x1))) b2(b3(a1(c1(x1)))) (66)
b2(b1(c3(x1))) b2(b3(a1(c3(x1)))) (67)
b2(b1(c0(x1))) b2(b3(a1(c0(x1)))) (68)
b2(b1(c2(x1))) b2(b3(a1(c2(x1)))) (69)
c0(d1(x1)) c2(b1(c1(x1))) (70)
c0(d3(x1)) c2(b1(c3(x1))) (71)
c0(d0(x1)) c2(b1(c0(x1))) (72)
c0(d2(x1)) c2(b1(c2(x1))) (73)
a0(d1(x1)) a2(b1(c1(x1))) (74)
a0(d3(x1)) a2(b1(c3(x1))) (75)
a0(d0(x1)) a2(b1(c0(x1))) (76)
a0(d2(x1)) a2(b1(c2(x1))) (77)
d0(d1(x1)) d2(b1(c1(x1))) (78)
d0(d3(x1)) d2(b1(c3(x1))) (79)
d0(d0(x1)) d2(b1(c0(x1))) (80)
d0(d2(x1)) d2(b1(c2(x1))) (81)
b0(d1(x1)) b2(b1(c1(x1))) (82)
b0(d3(x1)) b2(b1(c3(x1))) (83)
b0(d0(x1)) b2(b1(c0(x1))) (84)
b0(d2(x1)) b2(b1(c2(x1))) (85)

1.1.1.1 Rule Removal

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[d0(x1)] = x1 +
3/2
[d1(x1)] = x1 +
1
[d2(x1)] = x1 +
3/2
[d3(x1)] = x1 +
3
[c0(x1)] = x1 +
1
[c1(x1)] = x1 +
1/2
[c2(x1)] = x1 +
0
[c3(x1)] = x1 +
3/2
[b0(x1)] = x1 +
1
[b1(x1)] = x1 +
1/2
[b2(x1)] = x1 +
1/2
[b3(x1)] = x1 +
0
[a0(x1)] = x1 +
1
[a1(x1)] = x1 +
1/2
[a2(x1)] = x1 +
1
[a3(x1)] = x1 +
7/2
all of the following rules can be deleted.
c1(c1(c1(c3(a3(x1))))) c0(d0(d3(x1))) (23)
a1(c1(c1(c3(a3(x1))))) a0(d0(d3(x1))) (27)
d1(c1(c1(c3(a3(x1))))) d0(d0(d3(x1))) (31)
b1(c1(c1(c3(a3(x1))))) b0(d0(d3(x1))) (35)
c0(d2(b1(x1))) c1(c1(c1(x1))) (38)
c0(d2(b0(x1))) c1(c1(c0(x1))) (40)
c0(d2(b2(x1))) c1(c1(c2(x1))) (41)
a0(d2(b1(x1))) a1(c1(c1(x1))) (42)
a0(d2(b0(x1))) a1(c1(c0(x1))) (44)
a0(d2(b2(x1))) a1(c1(c2(x1))) (45)
d0(d2(b1(x1))) d1(c1(c1(x1))) (46)
d0(d2(b0(x1))) d1(c1(c0(x1))) (48)
d0(d2(b2(x1))) d1(c1(c2(x1))) (49)
b0(d2(b1(x1))) b1(c1(c1(x1))) (50)
b0(d2(b0(x1))) b1(c1(c0(x1))) (52)
b0(d2(b2(x1))) b1(c1(c2(x1))) (53)
c0(d1(x1)) c2(b1(c1(x1))) (70)
c0(d3(x1)) c2(b1(c3(x1))) (71)
c0(d0(x1)) c2(b1(c0(x1))) (72)
c0(d2(x1)) c2(b1(c2(x1))) (73)
a0(d3(x1)) a2(b1(c3(x1))) (75)
a0(d2(x1)) a2(b1(c2(x1))) (77)
d0(d3(x1)) d2(b1(c3(x1))) (79)
d0(d2(x1)) d2(b1(c2(x1))) (81)
b0(d1(x1)) b2(b1(c1(x1))) (82)
b0(d3(x1)) b2(b1(c3(x1))) (83)
b0(d0(x1)) b2(b1(c0(x1))) (84)
b0(d2(x1)) b2(b1(c2(x1))) (85)

1.1.1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
d0#(d0(x1)) d2#(b1(c0(x1))) (86)
d0#(d0(x1)) c0#(x1) (87)
d0#(d0(x1)) b1#(c0(x1)) (88)
d0#(d1(x1)) d2#(b1(c1(x1))) (89)
d0#(d1(x1)) c1#(x1) (90)
d0#(d1(x1)) b1#(c1(x1)) (91)
d0#(d2(b3(x1))) d1#(c1(c3(x1))) (92)
d0#(d2(b3(x1))) c1#(c3(x1)) (93)
d1#(c1(c1(c3(a0(x1))))) d0#(x1) (94)
d1#(c1(c1(c3(a0(x1))))) d0#(d0(x1)) (95)
d1#(c1(c1(c3(a0(x1))))) d0#(d0(d0(x1))) (96)
d1#(c1(c1(c3(a1(x1))))) d0#(d0(d1(x1))) (97)
d1#(c1(c1(c3(a1(x1))))) d0#(d1(x1)) (98)
d1#(c1(c1(c3(a1(x1))))) d1#(x1) (99)
d1#(c1(c1(c3(a2(x1))))) d0#(d0(d2(x1))) (100)
d1#(c1(c1(c3(a2(x1))))) d0#(d2(x1)) (101)
d1#(c1(c1(c3(a2(x1))))) d2#(x1) (102)
d2#(b1(c0(x1))) d2#(b3(a1(c0(x1)))) (103)
d2#(b1(c0(x1))) a1#(c0(x1)) (104)
d2#(b1(c1(x1))) d2#(b3(a1(c1(x1)))) (105)
d2#(b1(c1(x1))) a1#(c1(x1)) (106)
d2#(b1(c2(x1))) d2#(b3(a1(c2(x1)))) (107)
d2#(b1(c2(x1))) a1#(c2(x1)) (108)
d2#(b1(c3(x1))) d2#(b3(a1(c3(x1)))) (109)
d2#(b1(c3(x1))) a1#(c3(x1)) (110)
c0#(d2(b3(x1))) c1#(c1(c3(x1))) (111)
c0#(d2(b3(x1))) c1#(c3(x1)) (112)
c1#(c1(c1(c3(a0(x1))))) d0#(x1) (113)
c1#(c1(c1(c3(a0(x1))))) d0#(d0(x1)) (114)
c1#(c1(c1(c3(a0(x1))))) c0#(d0(d0(x1))) (115)
c1#(c1(c1(c3(a1(x1))))) d0#(d1(x1)) (116)
c1#(c1(c1(c3(a1(x1))))) d1#(x1) (117)
c1#(c1(c1(c3(a1(x1))))) c0#(d0(d1(x1))) (118)
c1#(c1(c1(c3(a2(x1))))) d0#(d2(x1)) (119)
c1#(c1(c1(c3(a2(x1))))) d2#(x1) (120)
c1#(c1(c1(c3(a2(x1))))) c0#(d0(d2(x1))) (121)
c2#(b1(c0(x1))) c2#(b3(a1(c0(x1)))) (122)
c2#(b1(c0(x1))) a1#(c0(x1)) (123)
c2#(b1(c1(x1))) c2#(b3(a1(c1(x1)))) (124)
c2#(b1(c1(x1))) a1#(c1(x1)) (125)
c2#(b1(c2(x1))) c2#(b3(a1(c2(x1)))) (126)
c2#(b1(c2(x1))) a1#(c2(x1)) (127)
c2#(b1(c3(x1))) c2#(b3(a1(c3(x1)))) (128)
c2#(b1(c3(x1))) a1#(c3(x1)) (129)
b0#(d2(b3(x1))) c1#(c3(x1)) (130)
b0#(d2(b3(x1))) b1#(c1(c3(x1))) (131)
b1#(c1(c1(c3(a0(x1))))) d0#(x1) (132)
b1#(c1(c1(c3(a0(x1))))) d0#(d0(x1)) (133)
b1#(c1(c1(c3(a0(x1))))) b0#(d0(d0(x1))) (134)
b1#(c1(c1(c3(a1(x1))))) d0#(d1(x1)) (135)
b1#(c1(c1(c3(a1(x1))))) d1#(x1) (136)
b1#(c1(c1(c3(a1(x1))))) b0#(d0(d1(x1))) (137)
b1#(c1(c1(c3(a2(x1))))) d0#(d2(x1)) (138)
b1#(c1(c1(c3(a2(x1))))) d2#(x1) (139)
b1#(c1(c1(c3(a2(x1))))) b0#(d0(d2(x1))) (140)
b2#(b1(c0(x1))) b2#(b3(a1(c0(x1)))) (141)
b2#(b1(c0(x1))) a1#(c0(x1)) (142)
b2#(b1(c1(x1))) b2#(b3(a1(c1(x1)))) (143)
b2#(b1(c1(x1))) a1#(c1(x1)) (144)
b2#(b1(c2(x1))) b2#(b3(a1(c2(x1)))) (145)
b2#(b1(c2(x1))) a1#(c2(x1)) (146)
b2#(b1(c3(x1))) b2#(b3(a1(c3(x1)))) (147)
b2#(b1(c3(x1))) a1#(c3(x1)) (148)
a0#(d0(x1)) c0#(x1) (149)
a0#(d0(x1)) b1#(c0(x1)) (150)
a0#(d0(x1)) a2#(b1(c0(x1))) (151)
a0#(d1(x1)) c1#(x1) (152)
a0#(d1(x1)) b1#(c1(x1)) (153)
a0#(d1(x1)) a2#(b1(c1(x1))) (154)
a0#(d2(b3(x1))) c1#(c3(x1)) (155)
a0#(d2(b3(x1))) a1#(c1(c3(x1))) (156)
a1#(c1(c1(c3(a0(x1))))) d0#(x1) (157)
a1#(c1(c1(c3(a0(x1))))) d0#(d0(x1)) (158)
a1#(c1(c1(c3(a0(x1))))) a0#(d0(d0(x1))) (159)
a1#(c1(c1(c3(a1(x1))))) d0#(d1(x1)) (160)
a1#(c1(c1(c3(a1(x1))))) d1#(x1) (161)
a1#(c1(c1(c3(a1(x1))))) a0#(d0(d1(x1))) (162)
a1#(c1(c1(c3(a2(x1))))) d0#(d2(x1)) (163)
a1#(c1(c1(c3(a2(x1))))) d2#(x1) (164)
a1#(c1(c1(c3(a2(x1))))) a0#(d0(d2(x1))) (165)
a2#(b1(c0(x1))) a1#(c0(x1)) (166)
a2#(b1(c0(x1))) a2#(b3(a1(c0(x1)))) (167)
a2#(b1(c1(x1))) a1#(c1(x1)) (168)
a2#(b1(c1(x1))) a2#(b3(a1(c1(x1)))) (169)
a2#(b1(c2(x1))) a1#(c2(x1)) (170)
a2#(b1(c2(x1))) a2#(b3(a1(c2(x1)))) (171)
a2#(b1(c3(x1))) a1#(c3(x1)) (172)
a2#(b1(c3(x1))) a2#(b3(a1(c3(x1)))) (173)

1.1.1.1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[d0(x1)] = x1 +
4
[d1(x1)] = x1 +
4
[d2(x1)] = x1 +
4
[c0(x1)] = x1 +
1
[c1(x1)] = x1 +
1
[c2(x1)] = x1 +
0
[c3(x1)] = x1 +
3
[b0(x1)] = x1 +
3
[b1(x1)] = x1 +
3
[b2(x1)] = x1 +
0
[b3(x1)] = x1 +
0
[a0(x1)] = x1 +
3
[a1(x1)] = x1 +
3
[a2(x1)] = x1 +
3
[d0#(x1)] = x1 +
1
[d1#(x1)] = x1 +
1
[d2#(x1)] = x1 +
0
[c0#(x1)] = x1 +
0
[c1#(x1)] = x1 +
0
[c2#(x1)] = x1 +
1
[b0#(x1)] = x1 +
2
[b1#(x1)] = x1 +
2
[b2#(x1)] = x1 +
1
[a0#(x1)] = x1 +
2
[a1#(x1)] = x1 +
2
[a2#(x1)] = x1 +
1
together with the usable rules
c1(c1(c1(c3(a1(x1))))) c0(d0(d1(x1))) (22)
c1(c1(c1(c3(a0(x1))))) c0(d0(d0(x1))) (24)
c1(c1(c1(c3(a2(x1))))) c0(d0(d2(x1))) (25)
a1(c1(c1(c3(a1(x1))))) a0(d0(d1(x1))) (26)
a1(c1(c1(c3(a0(x1))))) a0(d0(d0(x1))) (28)
a1(c1(c1(c3(a2(x1))))) a0(d0(d2(x1))) (29)
d1(c1(c1(c3(a1(x1))))) d0(d0(d1(x1))) (30)
d1(c1(c1(c3(a0(x1))))) d0(d0(d0(x1))) (32)
d1(c1(c1(c3(a2(x1))))) d0(d0(d2(x1))) (33)
b1(c1(c1(c3(a1(x1))))) b0(d0(d1(x1))) (34)
b1(c1(c1(c3(a0(x1))))) b0(d0(d0(x1))) (36)
b1(c1(c1(c3(a2(x1))))) b0(d0(d2(x1))) (37)
c0(d2(b3(x1))) c1(c1(c3(x1))) (39)
a0(d2(b3(x1))) a1(c1(c3(x1))) (43)
d0(d2(b3(x1))) d1(c1(c3(x1))) (47)
b0(d2(b3(x1))) b1(c1(c3(x1))) (51)
c2(b1(c1(x1))) c2(b3(a1(c1(x1)))) (54)
c2(b1(c3(x1))) c2(b3(a1(c3(x1)))) (55)
c2(b1(c0(x1))) c2(b3(a1(c0(x1)))) (56)
c2(b1(c2(x1))) c2(b3(a1(c2(x1)))) (57)
a2(b1(c1(x1))) a2(b3(a1(c1(x1)))) (58)
a2(b1(c3(x1))) a2(b3(a1(c3(x1)))) (59)
a2(b1(c0(x1))) a2(b3(a1(c0(x1)))) (60)
a2(b1(c2(x1))) a2(b3(a1(c2(x1)))) (61)
d2(b1(c1(x1))) d2(b3(a1(c1(x1)))) (62)
d2(b1(c3(x1))) d2(b3(a1(c3(x1)))) (63)
d2(b1(c0(x1))) d2(b3(a1(c0(x1)))) (64)
d2(b1(c2(x1))) d2(b3(a1(c2(x1)))) (65)
b2(b1(c1(x1))) b2(b3(a1(c1(x1)))) (66)
b2(b1(c3(x1))) b2(b3(a1(c3(x1)))) (67)
b2(b1(c0(x1))) b2(b3(a1(c0(x1)))) (68)
b2(b1(c2(x1))) b2(b3(a1(c2(x1)))) (69)
a0(d1(x1)) a2(b1(c1(x1))) (74)
a0(d0(x1)) a2(b1(c0(x1))) (76)
d0(d1(x1)) d2(b1(c1(x1))) (78)
d0(d0(x1)) d2(b1(c0(x1))) (80)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
d0#(d0(x1)) d2#(b1(c0(x1))) (86)
d0#(d0(x1)) c0#(x1) (87)
d0#(d0(x1)) b1#(c0(x1)) (88)
d0#(d1(x1)) d2#(b1(c1(x1))) (89)
d0#(d1(x1)) c1#(x1) (90)
d0#(d1(x1)) b1#(c1(x1)) (91)
d0#(d2(b3(x1))) c1#(c3(x1)) (93)
d1#(c1(c1(c3(a0(x1))))) d0#(x1) (94)
d1#(c1(c1(c3(a0(x1))))) d0#(d0(x1)) (95)
d1#(c1(c1(c3(a1(x1))))) d0#(d1(x1)) (98)
d1#(c1(c1(c3(a1(x1))))) d1#(x1) (99)
d1#(c1(c1(c3(a2(x1))))) d0#(d2(x1)) (101)
d1#(c1(c1(c3(a2(x1))))) d2#(x1) (102)
d2#(b1(c0(x1))) a1#(c0(x1)) (104)
d2#(b1(c1(x1))) a1#(c1(x1)) (106)
d2#(b1(c2(x1))) a1#(c2(x1)) (108)
d2#(b1(c3(x1))) a1#(c3(x1)) (110)
c0#(d2(b3(x1))) c1#(c3(x1)) (112)
c1#(c1(c1(c3(a0(x1))))) d0#(x1) (113)
c1#(c1(c1(c3(a0(x1))))) d0#(d0(x1)) (114)
c1#(c1(c1(c3(a1(x1))))) d0#(d1(x1)) (116)
c1#(c1(c1(c3(a1(x1))))) d1#(x1) (117)
c1#(c1(c1(c3(a2(x1))))) d0#(d2(x1)) (119)
c1#(c1(c1(c3(a2(x1))))) d2#(x1) (120)
c2#(b1(c0(x1))) a1#(c0(x1)) (123)
c2#(b1(c1(x1))) a1#(c1(x1)) (125)
c2#(b1(c2(x1))) a1#(c2(x1)) (127)
c2#(b1(c3(x1))) a1#(c3(x1)) (129)
b0#(d2(b3(x1))) c1#(c3(x1)) (130)
b1#(c1(c1(c3(a0(x1))))) d0#(x1) (132)
b1#(c1(c1(c3(a0(x1))))) d0#(d0(x1)) (133)
b1#(c1(c1(c3(a1(x1))))) d0#(d1(x1)) (135)
b1#(c1(c1(c3(a1(x1))))) d1#(x1) (136)
b1#(c1(c1(c3(a2(x1))))) d0#(d2(x1)) (138)
b1#(c1(c1(c3(a2(x1))))) d2#(x1) (139)
b2#(b1(c0(x1))) a1#(c0(x1)) (142)
b2#(b1(c1(x1))) a1#(c1(x1)) (144)
b2#(b1(c2(x1))) a1#(c2(x1)) (146)
b2#(b1(c3(x1))) a1#(c3(x1)) (148)
a0#(d0(x1)) c0#(x1) (149)
a0#(d0(x1)) b1#(c0(x1)) (150)
a0#(d0(x1)) a2#(b1(c0(x1))) (151)
a0#(d1(x1)) c1#(x1) (152)
a0#(d1(x1)) b1#(c1(x1)) (153)
a0#(d1(x1)) a2#(b1(c1(x1))) (154)
a0#(d2(b3(x1))) c1#(c3(x1)) (155)
a1#(c1(c1(c3(a0(x1))))) d0#(x1) (157)
a1#(c1(c1(c3(a0(x1))))) d0#(d0(x1)) (158)
a1#(c1(c1(c3(a1(x1))))) d0#(d1(x1)) (160)
a1#(c1(c1(c3(a1(x1))))) d1#(x1) (161)
a1#(c1(c1(c3(a2(x1))))) d0#(d2(x1)) (163)
a1#(c1(c1(c3(a2(x1))))) d2#(x1) (164)
a2#(b1(c0(x1))) a1#(c0(x1)) (166)
a2#(b1(c1(x1))) a1#(c1(x1)) (168)
a2#(b1(c2(x1))) a1#(c2(x1)) (170)
a2#(b1(c3(x1))) a1#(c3(x1)) (172)
and no rules could be deleted.

1.1.1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.