Certification Problem

Input (TPDB SRS_Standard/Zantema_04/z123)

The rewrite relation of the following TRS is considered.

a(a(x1)) b(b(b(x1))) (1)
a(x1) d(c(d(x1))) (2)
b(b(b(x1))) a(f(x1)) (3)
b(b(x1)) c(c(c(x1))) (4)
c(c(x1)) d(d(d(x1))) (5)
c(d(d(x1))) f(x1) (6)
f(f(x1)) f(a(x1)) (7)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 Rule Removal

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[f(x1)] = x1 +
46
[d(x1)] = x1 +
13
[c(x1)] = x1 +
20
[b(x1)] = x1 +
92/3
[a(x1)] = x1 +
46
all of the following rules can be deleted.
b(b(x1)) c(c(c(x1))) (4)
c(c(x1)) d(d(d(x1))) (5)

1.1 Closure Under Flat Contexts

Using the flat contexts

{f(), d(), c(), b(), a()}

We obtain the transformed TRS
f(a(a(x1))) f(b(b(b(x1)))) (8)
f(a(x1)) f(d(c(d(x1)))) (9)
f(b(b(b(x1)))) f(a(f(x1))) (10)
f(c(d(d(x1)))) f(f(x1)) (11)
f(f(f(x1))) f(f(a(x1))) (12)
d(a(a(x1))) d(b(b(b(x1)))) (13)
d(a(x1)) d(d(c(d(x1)))) (14)
d(b(b(b(x1)))) d(a(f(x1))) (15)
d(c(d(d(x1)))) d(f(x1)) (16)
d(f(f(x1))) d(f(a(x1))) (17)
c(a(a(x1))) c(b(b(b(x1)))) (18)
c(a(x1)) c(d(c(d(x1)))) (19)
c(b(b(b(x1)))) c(a(f(x1))) (20)
c(c(d(d(x1)))) c(f(x1)) (21)
c(f(f(x1))) c(f(a(x1))) (22)
b(a(a(x1))) b(b(b(b(x1)))) (23)
b(a(x1)) b(d(c(d(x1)))) (24)
b(b(b(b(x1)))) b(a(f(x1))) (25)
b(c(d(d(x1)))) b(f(x1)) (26)
b(f(f(x1))) b(f(a(x1))) (27)
a(a(a(x1))) a(b(b(b(x1)))) (28)
a(a(x1)) a(d(c(d(x1)))) (29)
a(b(b(b(x1)))) a(a(f(x1))) (30)
a(c(d(d(x1)))) a(f(x1)) (31)
a(f(f(x1))) a(f(a(x1))) (32)

1.1.1 Semantic Labeling

The following interpretations form a model of the rules.

As carrier we take the set {0,...,4}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 5):

[f(x1)] = 5x1 + 0
[d(x1)] = 5x1 + 1
[c(x1)] = 5x1 + 2
[b(x1)] = 5x1 + 3
[a(x1)] = 5x1 + 4

We obtain the labeled TRS

There are 125 ruless (increase limit for explicit display).

1.1.1.1 Rule Removal

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[f0(x1)] = x1 +
11/2
[f1(x1)] = x1 +
0
[f2(x1)] = x1 +
11/2
[f3(x1)] = x1 +
1/2
[f4(x1)] = x1 +
1/2
[d0(x1)] = x1 +
0
[d1(x1)] = x1 +
11/2
[d2(x1)] = x1 +
0
[d3(x1)] = x1 +
6
[d4(x1)] = x1 +
6
[c0(x1)] = x1 +
0
[c1(x1)] = x1 +
0
[c2(x1)] = x1 +
1
[c3(x1)] = x1 +
5
[c4(x1)] = x1 +
5
[b0(x1)] = x1 +
0
[b1(x1)] = x1 +
0
[b2(x1)] = x1 +
5
[b3(x1)] = x1 +
13/4
[b4(x1)] = x1 +
13/4
[a0(x1)] = x1 +
1
[a1(x1)] = x1 +
5
[a2(x1)] = x1 +
7
[a3(x1)] = x1 +
11/2
[a4(x1)] = x1 +
11/2
all of the following rules can be deleted.
a4(a4(a4(x1))) a3(b3(b3(b4(x1)))) (33)
a4(a4(a3(x1))) a3(b3(b3(b3(x1)))) (34)
a4(a4(a1(x1))) a3(b3(b3(b1(x1)))) (35)
a4(a4(a2(x1))) a3(b3(b3(b2(x1)))) (36)
b4(a4(a4(x1))) b3(b3(b3(b4(x1)))) (38)
b4(a4(a3(x1))) b3(b3(b3(b3(x1)))) (39)
b4(a4(a1(x1))) b3(b3(b3(b1(x1)))) (40)
b4(a4(a2(x1))) b3(b3(b3(b2(x1)))) (41)
d4(a4(a4(x1))) d3(b3(b3(b4(x1)))) (43)
d4(a4(a3(x1))) d3(b3(b3(b3(x1)))) (44)
d4(a4(a1(x1))) d3(b3(b3(b1(x1)))) (45)
d4(a4(a2(x1))) d3(b3(b3(b2(x1)))) (46)
c4(a4(a4(x1))) c3(b3(b3(b4(x1)))) (48)
c4(a4(a3(x1))) c3(b3(b3(b3(x1)))) (49)
c4(a4(a1(x1))) c3(b3(b3(b1(x1)))) (50)
c4(a4(a2(x1))) c3(b3(b3(b2(x1)))) (51)
f4(a4(a4(x1))) f3(b3(b3(b4(x1)))) (53)
f4(a4(a3(x1))) f3(b3(b3(b3(x1)))) (54)
f4(a4(a1(x1))) f3(b3(b3(b1(x1)))) (55)
f4(a4(a2(x1))) f3(b3(b3(b2(x1)))) (56)
a4(a2(x1)) a1(d2(c1(d2(x1)))) (61)
a4(a0(x1)) a1(d2(c1(d0(x1)))) (62)
b4(a4(x1)) b1(d2(c1(d4(x1)))) (63)
b4(a3(x1)) b1(d2(c1(d3(x1)))) (64)
b4(a1(x1)) b1(d2(c1(d1(x1)))) (65)
b4(a2(x1)) b1(d2(c1(d2(x1)))) (66)
b4(a0(x1)) b1(d2(c1(d0(x1)))) (67)
d4(a2(x1)) d1(d2(c1(d2(x1)))) (71)
d4(a0(x1)) d1(d2(c1(d0(x1)))) (72)
c4(a4(x1)) c1(d2(c1(d4(x1)))) (73)
c4(a3(x1)) c1(d2(c1(d3(x1)))) (74)
c4(a1(x1)) c1(d2(c1(d1(x1)))) (75)
c4(a2(x1)) c1(d2(c1(d2(x1)))) (76)
c4(a0(x1)) c1(d2(c1(d0(x1)))) (77)
f4(a2(x1)) f1(d2(c1(d2(x1)))) (81)
f4(a0(x1)) f1(d2(c1(d0(x1)))) (82)
a3(b3(b3(b4(x1)))) a4(a0(f4(x1))) (83)
a3(b3(b3(b3(x1)))) a4(a0(f3(x1))) (84)
a3(b3(b3(b1(x1)))) a4(a0(f1(x1))) (85)
a3(b3(b3(b2(x1)))) a4(a0(f2(x1))) (86)
b3(b3(b3(b4(x1)))) b4(a0(f4(x1))) (88)
b3(b3(b3(b3(x1)))) b4(a0(f3(x1))) (89)
b3(b3(b3(b1(x1)))) b4(a0(f1(x1))) (90)
b3(b3(b3(b2(x1)))) b4(a0(f2(x1))) (91)
d3(b3(b3(b4(x1)))) d4(a0(f4(x1))) (93)
d3(b3(b3(b3(x1)))) d4(a0(f3(x1))) (94)
d3(b3(b3(b1(x1)))) d4(a0(f1(x1))) (95)
d3(b3(b3(b2(x1)))) d4(a0(f2(x1))) (96)
c3(b3(b3(b4(x1)))) c4(a0(f4(x1))) (98)
c3(b3(b3(b3(x1)))) c4(a0(f3(x1))) (99)
c3(b3(b3(b1(x1)))) c4(a0(f1(x1))) (100)
c3(b3(b3(b2(x1)))) c4(a0(f2(x1))) (101)
f3(b3(b3(b4(x1)))) f4(a0(f4(x1))) (103)
f3(b3(b3(b3(x1)))) f4(a0(f3(x1))) (104)
f3(b3(b3(b1(x1)))) f4(a0(f1(x1))) (105)
f3(b3(b3(b2(x1)))) f4(a0(f2(x1))) (106)
a2(c1(d1(d4(x1)))) a0(f4(x1)) (108)
a2(c1(d1(d3(x1)))) a0(f3(x1)) (109)
a2(c1(d1(d1(x1)))) a0(f1(x1)) (110)
a2(c1(d1(d2(x1)))) a0(f2(x1)) (111)
a2(c1(d1(d0(x1)))) a0(f0(x1)) (112)
b2(c1(d1(d4(x1)))) b0(f4(x1)) (113)
b2(c1(d1(d3(x1)))) b0(f3(x1)) (114)
b2(c1(d1(d1(x1)))) b0(f1(x1)) (115)
b2(c1(d1(d2(x1)))) b0(f2(x1)) (116)
b2(c1(d1(d0(x1)))) b0(f0(x1)) (117)
d2(c1(d1(d4(x1)))) d0(f4(x1)) (118)
d2(c1(d1(d3(x1)))) d0(f3(x1)) (119)
d2(c1(d1(d1(x1)))) d0(f1(x1)) (120)
c2(c1(d1(d4(x1)))) c0(f4(x1)) (123)
c2(c1(d1(d3(x1)))) c0(f3(x1)) (124)
c2(c1(d1(d1(x1)))) c0(f1(x1)) (125)
c2(c1(d1(d2(x1)))) c0(f2(x1)) (126)
c2(c1(d1(d0(x1)))) c0(f0(x1)) (127)
f2(c1(d1(d4(x1)))) f0(f4(x1)) (128)
f2(c1(d1(d3(x1)))) f0(f3(x1)) (129)
f2(c1(d1(d1(x1)))) f0(f1(x1)) (130)
a0(f0(f2(x1))) a0(f4(a2(x1))) (136)
a0(f0(f0(x1))) a0(f4(a0(x1))) (137)
b0(f0(f2(x1))) b0(f4(a2(x1))) (141)
b0(f0(f0(x1))) b0(f4(a0(x1))) (142)
d0(f0(f2(x1))) d0(f4(a2(x1))) (146)
d0(f0(f0(x1))) d0(f4(a0(x1))) (147)
c0(f0(f2(x1))) c0(f4(a2(x1))) (151)
c0(f0(f0(x1))) c0(f4(a0(x1))) (152)
f0(f0(f2(x1))) f0(f4(a2(x1))) (156)
f0(f0(f0(x1))) f0(f4(a0(x1))) (157)

1.1.1.1.1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
a0(a4(a4(x1))) b0(b3(b3(a3(x1)))) (158)
a0(a4(b4(x1))) b0(b3(b3(b3(x1)))) (159)
a0(a4(d4(x1))) b0(b3(b3(d3(x1)))) (160)
a0(a4(c4(x1))) b0(b3(b3(c3(x1)))) (161)
a0(a4(f4(x1))) b0(b3(b3(f3(x1)))) (162)
a4(a4(x1)) d4(c1(d2(a1(x1)))) (163)
a3(a4(x1)) d3(c1(d2(a1(x1)))) (164)
a1(a4(x1)) d1(c1(d2(a1(x1)))) (165)
a4(d4(x1)) d4(c1(d2(d1(x1)))) (166)
a3(d4(x1)) d3(c1(d2(d1(x1)))) (167)
a1(d4(x1)) d1(c1(d2(d1(x1)))) (168)
a4(f4(x1)) d4(c1(d2(f1(x1)))) (169)
a3(f4(x1)) d3(c1(d2(f1(x1)))) (170)
a1(f4(x1)) d1(c1(d2(f1(x1)))) (171)
b0(b3(b3(a3(x1)))) f0(a0(a4(x1))) (172)
b0(b3(b3(b3(x1)))) f0(a0(b4(x1))) (173)
b0(b3(b3(d3(x1)))) f0(a0(d4(x1))) (174)
b0(b3(b3(c3(x1)))) f0(a0(c4(x1))) (175)
b0(b3(b3(f3(x1)))) f0(a0(f4(x1))) (176)
d2(d1(c1(d2(x1)))) f2(d0(x1)) (177)
d0(d1(c1(d2(x1)))) f0(d0(x1)) (178)
d2(d1(c1(f2(x1)))) f2(f0(x1)) (179)
d0(d1(c1(f2(x1)))) f0(f0(x1)) (180)
f4(f0(a0(x1))) a4(f4(a0(x1))) (181)
f3(f0(a0(x1))) a3(f4(a0(x1))) (182)
f1(f0(a0(x1))) a1(f4(a0(x1))) (183)
f4(f0(b0(x1))) a4(f4(b0(x1))) (184)
f3(f0(b0(x1))) a3(f4(b0(x1))) (185)
f1(f0(b0(x1))) a1(f4(b0(x1))) (186)
f4(f0(d0(x1))) a4(f4(d0(x1))) (187)
f3(f0(d0(x1))) a3(f4(d0(x1))) (188)
f1(f0(d0(x1))) a1(f4(d0(x1))) (189)
f4(f0(c0(x1))) a4(f4(c0(x1))) (190)
f3(f0(c0(x1))) a3(f4(c0(x1))) (191)
f1(f0(c0(x1))) a1(f4(c0(x1))) (192)
f4(f0(f0(x1))) a4(f4(f0(x1))) (193)
f3(f0(f0(x1))) a3(f4(f0(x1))) (194)
f1(f0(f0(x1))) a1(f4(f0(x1))) (195)

1.1.1.1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
f1#(f0(f0(x1))) f4#(f0(x1)) (196)
f1#(f0(f0(x1))) a1#(f4(f0(x1))) (197)
f1#(f0(d0(x1))) f4#(d0(x1)) (198)
f1#(f0(d0(x1))) a1#(f4(d0(x1))) (199)
f1#(f0(c0(x1))) f4#(c0(x1)) (200)
f1#(f0(c0(x1))) a1#(f4(c0(x1))) (201)
f1#(f0(b0(x1))) f4#(b0(x1)) (202)
f1#(f0(b0(x1))) a1#(f4(b0(x1))) (203)
f1#(f0(a0(x1))) f4#(a0(x1)) (204)
f1#(f0(a0(x1))) a1#(f4(a0(x1))) (205)
f3#(f0(f0(x1))) f4#(f0(x1)) (206)
f3#(f0(f0(x1))) a3#(f4(f0(x1))) (207)
f3#(f0(d0(x1))) f4#(d0(x1)) (208)
f3#(f0(d0(x1))) a3#(f4(d0(x1))) (209)
f3#(f0(c0(x1))) f4#(c0(x1)) (210)
f3#(f0(c0(x1))) a3#(f4(c0(x1))) (211)
f3#(f0(b0(x1))) f4#(b0(x1)) (212)
f3#(f0(b0(x1))) a3#(f4(b0(x1))) (213)
f3#(f0(a0(x1))) f4#(a0(x1)) (214)
f3#(f0(a0(x1))) a3#(f4(a0(x1))) (215)
f4#(f0(f0(x1))) f4#(f0(x1)) (216)
f4#(f0(f0(x1))) a4#(f4(f0(x1))) (217)
f4#(f0(d0(x1))) f4#(d0(x1)) (218)
f4#(f0(d0(x1))) a4#(f4(d0(x1))) (219)
f4#(f0(c0(x1))) f4#(c0(x1)) (220)
f4#(f0(c0(x1))) a4#(f4(c0(x1))) (221)
f4#(f0(b0(x1))) f4#(b0(x1)) (222)
f4#(f0(b0(x1))) a4#(f4(b0(x1))) (223)
f4#(f0(a0(x1))) f4#(a0(x1)) (224)
f4#(f0(a0(x1))) a4#(f4(a0(x1))) (225)
d0#(d1(c1(d2(x1)))) d0#(x1) (226)
d2#(d1(c1(d2(x1)))) d0#(x1) (227)
b0#(b3(b3(f3(x1)))) f4#(x1) (228)
b0#(b3(b3(f3(x1)))) a0#(f4(x1)) (229)
b0#(b3(b3(d3(x1)))) a0#(d4(x1)) (230)
b0#(b3(b3(c3(x1)))) a0#(c4(x1)) (231)
b0#(b3(b3(b3(x1)))) a0#(b4(x1)) (232)
b0#(b3(b3(a3(x1)))) a0#(a4(x1)) (233)
b0#(b3(b3(a3(x1)))) a4#(x1) (234)
a0#(a4(f4(x1))) f3#(x1) (235)
a0#(a4(f4(x1))) b0#(b3(b3(f3(x1)))) (236)
a0#(a4(d4(x1))) b0#(b3(b3(d3(x1)))) (237)
a0#(a4(c4(x1))) b0#(b3(b3(c3(x1)))) (238)
a0#(a4(b4(x1))) b0#(b3(b3(b3(x1)))) (239)
a0#(a4(a4(x1))) b0#(b3(b3(a3(x1)))) (240)
a0#(a4(a4(x1))) a3#(x1) (241)
a1#(f4(x1)) f1#(x1) (242)
a1#(f4(x1)) d2#(f1(x1)) (243)
a1#(d4(x1)) d2#(d1(x1)) (244)
a1#(a4(x1)) d2#(a1(x1)) (245)
a1#(a4(x1)) a1#(x1) (246)
a3#(f4(x1)) f1#(x1) (247)
a3#(f4(x1)) d2#(f1(x1)) (248)
a3#(d4(x1)) d2#(d1(x1)) (249)
a3#(a4(x1)) d2#(a1(x1)) (250)
a3#(a4(x1)) a1#(x1) (251)
a4#(f4(x1)) f1#(x1) (252)
a4#(f4(x1)) d2#(f1(x1)) (253)
a4#(d4(x1)) d2#(d1(x1)) (254)
a4#(a4(x1)) d2#(a1(x1)) (255)
a4#(a4(x1)) a1#(x1) (256)

1.1.1.1.1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[f0(x1)] = x1 +
3
[f1(x1)] = x1 +
0
[f2(x1)] = x1 +
3
[f3(x1)] = x1 +
3
[f4(x1)] = x1 +
3
[d0(x1)] = x1 +
0
[d1(x1)] = x1 +
0
[d2(x1)] = x1 +
0
[d3(x1)] = x1 +
3
[d4(x1)] = x1 +
3
[c0(x1)] = x1 +
0
[c1(x1)] = x1 +
3
[c3(x1)] = x1 +
0
[c4(x1)] = x1 +
0
[b0(x1)] = x1 +
0
[b3(x1)] = x1 +
3/2
[b4(x1)] = x1 +
3/2
[a0(x1)] = x1 +
0
[a1(x1)] = x1 +
0
[a3(x1)] = x1 +
3
[a4(x1)] = x1 +
3
[f1#(x1)] = x1 +
2
[f3#(x1)] = x1 +
5
[f4#(x1)] = x1 +
4
[d0#(x1)] = x1 +
0
[d2#(x1)] = x1 +
0
[b0#(x1)] = x1 +
3
[a0#(x1)] = x1 +
5
[a1#(x1)] = x1 +
0
[a3#(x1)] = x1 +
3
[a4#(x1)] = x1 +
3
together with the usable rules
a0(a4(a4(x1))) b0(b3(b3(a3(x1)))) (158)
a0(a4(b4(x1))) b0(b3(b3(b3(x1)))) (159)
a0(a4(d4(x1))) b0(b3(b3(d3(x1)))) (160)
a0(a4(c4(x1))) b0(b3(b3(c3(x1)))) (161)
a0(a4(f4(x1))) b0(b3(b3(f3(x1)))) (162)
a4(a4(x1)) d4(c1(d2(a1(x1)))) (163)
a3(a4(x1)) d3(c1(d2(a1(x1)))) (164)
a1(a4(x1)) d1(c1(d2(a1(x1)))) (165)
a4(d4(x1)) d4(c1(d2(d1(x1)))) (166)
a3(d4(x1)) d3(c1(d2(d1(x1)))) (167)
a1(d4(x1)) d1(c1(d2(d1(x1)))) (168)
a4(f4(x1)) d4(c1(d2(f1(x1)))) (169)
a3(f4(x1)) d3(c1(d2(f1(x1)))) (170)
a1(f4(x1)) d1(c1(d2(f1(x1)))) (171)
b0(b3(b3(a3(x1)))) f0(a0(a4(x1))) (172)
b0(b3(b3(b3(x1)))) f0(a0(b4(x1))) (173)
b0(b3(b3(d3(x1)))) f0(a0(d4(x1))) (174)
b0(b3(b3(c3(x1)))) f0(a0(c4(x1))) (175)
b0(b3(b3(f3(x1)))) f0(a0(f4(x1))) (176)
d2(d1(c1(d2(x1)))) f2(d0(x1)) (177)
d0(d1(c1(d2(x1)))) f0(d0(x1)) (178)
d2(d1(c1(f2(x1)))) f2(f0(x1)) (179)
d0(d1(c1(f2(x1)))) f0(f0(x1)) (180)
f4(f0(a0(x1))) a4(f4(a0(x1))) (181)
f3(f0(a0(x1))) a3(f4(a0(x1))) (182)
f1(f0(a0(x1))) a1(f4(a0(x1))) (183)
f4(f0(b0(x1))) a4(f4(b0(x1))) (184)
f3(f0(b0(x1))) a3(f4(b0(x1))) (185)
f1(f0(b0(x1))) a1(f4(b0(x1))) (186)
f4(f0(d0(x1))) a4(f4(d0(x1))) (187)
f3(f0(d0(x1))) a3(f4(d0(x1))) (188)
f1(f0(d0(x1))) a1(f4(d0(x1))) (189)
f4(f0(c0(x1))) a4(f4(c0(x1))) (190)
f3(f0(c0(x1))) a3(f4(c0(x1))) (191)
f1(f0(c0(x1))) a1(f4(c0(x1))) (192)
f4(f0(f0(x1))) a4(f4(f0(x1))) (193)
f3(f0(f0(x1))) a3(f4(f0(x1))) (194)
f1(f0(f0(x1))) a1(f4(f0(x1))) (195)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
f1#(f0(f0(x1))) f4#(f0(x1)) (196)
f1#(f0(f0(x1))) a1#(f4(f0(x1))) (197)
f1#(f0(d0(x1))) f4#(d0(x1)) (198)
f1#(f0(d0(x1))) a1#(f4(d0(x1))) (199)
f1#(f0(c0(x1))) f4#(c0(x1)) (200)
f1#(f0(c0(x1))) a1#(f4(c0(x1))) (201)
f1#(f0(b0(x1))) f4#(b0(x1)) (202)
f1#(f0(b0(x1))) a1#(f4(b0(x1))) (203)
f1#(f0(a0(x1))) f4#(a0(x1)) (204)
f1#(f0(a0(x1))) a1#(f4(a0(x1))) (205)
f3#(f0(f0(x1))) f4#(f0(x1)) (206)
f3#(f0(f0(x1))) a3#(f4(f0(x1))) (207)
f3#(f0(d0(x1))) f4#(d0(x1)) (208)
f3#(f0(d0(x1))) a3#(f4(d0(x1))) (209)
f3#(f0(c0(x1))) f4#(c0(x1)) (210)
f3#(f0(c0(x1))) a3#(f4(c0(x1))) (211)
f3#(f0(b0(x1))) f4#(b0(x1)) (212)
f3#(f0(b0(x1))) a3#(f4(b0(x1))) (213)
f3#(f0(a0(x1))) f4#(a0(x1)) (214)
f3#(f0(a0(x1))) a3#(f4(a0(x1))) (215)
f4#(f0(f0(x1))) f4#(f0(x1)) (216)
f4#(f0(f0(x1))) a4#(f4(f0(x1))) (217)
f4#(f0(d0(x1))) f4#(d0(x1)) (218)
f4#(f0(d0(x1))) a4#(f4(d0(x1))) (219)
f4#(f0(c0(x1))) f4#(c0(x1)) (220)
f4#(f0(c0(x1))) a4#(f4(c0(x1))) (221)
f4#(f0(b0(x1))) f4#(b0(x1)) (222)
f4#(f0(b0(x1))) a4#(f4(b0(x1))) (223)
f4#(f0(a0(x1))) f4#(a0(x1)) (224)
f4#(f0(a0(x1))) a4#(f4(a0(x1))) (225)
d0#(d1(c1(d2(x1)))) d0#(x1) (226)
d2#(d1(c1(d2(x1)))) d0#(x1) (227)
b0#(b3(b3(f3(x1)))) f4#(x1) (228)
b0#(b3(b3(f3(x1)))) a0#(f4(x1)) (229)
b0#(b3(b3(d3(x1)))) a0#(d4(x1)) (230)
b0#(b3(b3(c3(x1)))) a0#(c4(x1)) (231)
b0#(b3(b3(b3(x1)))) a0#(b4(x1)) (232)
b0#(b3(b3(a3(x1)))) a0#(a4(x1)) (233)
b0#(b3(b3(a3(x1)))) a4#(x1) (234)
a0#(a4(f4(x1))) f3#(x1) (235)
a0#(a4(f4(x1))) b0#(b3(b3(f3(x1)))) (236)
a0#(a4(d4(x1))) b0#(b3(b3(d3(x1)))) (237)
a0#(a4(c4(x1))) b0#(b3(b3(c3(x1)))) (238)
a0#(a4(b4(x1))) b0#(b3(b3(b3(x1)))) (239)
a0#(a4(a4(x1))) b0#(b3(b3(a3(x1)))) (240)
a0#(a4(a4(x1))) a3#(x1) (241)
a1#(f4(x1)) f1#(x1) (242)
a1#(f4(x1)) d2#(f1(x1)) (243)
a1#(d4(x1)) d2#(d1(x1)) (244)
a1#(a4(x1)) d2#(a1(x1)) (245)
a1#(a4(x1)) a1#(x1) (246)
a3#(f4(x1)) f1#(x1) (247)
a3#(f4(x1)) d2#(f1(x1)) (248)
a3#(d4(x1)) d2#(d1(x1)) (249)
a3#(a4(x1)) d2#(a1(x1)) (250)
a3#(a4(x1)) a1#(x1) (251)
a4#(f4(x1)) f1#(x1) (252)
a4#(f4(x1)) d2#(f1(x1)) (253)
a4#(d4(x1)) d2#(d1(x1)) (254)
a4#(a4(x1)) d2#(a1(x1)) (255)
a4#(a4(x1)) a1#(x1) (256)
and no rules could be deleted.

1.1.1.1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.