The rewrite relation of the following TRS is considered.
a(x1) | → | b(x1) | (1) |
a(a(x1)) | → | a(b(a(x1))) | (2) |
a(b(x1)) | → | b(b(b(x1))) | (3) |
a(a(a(x1))) | → | a(a(b(a(a(x1))))) | (4) |
a(a(b(x1))) | → | a(b(b(a(b(x1))))) | (5) |
a(b(a(x1))) | → | b(a(b(b(a(x1))))) | (6) |
a(b(b(x1))) | → | b(b(b(b(b(x1))))) | (7) |
b(a(x1)) | → | b(b(b(x1))) | (8) |
a(b(a(x1))) | → | a(b(b(a(b(x1))))) | (9) |
b(a(a(x1))) | → | b(a(b(b(a(x1))))) | (10) |
b(b(a(x1))) | → | b(b(b(b(b(x1))))) | (11) |
We split R in the relative problem D/R-D and R-D, where the rules D
a(a(x1)) | → | a(b(a(x1))) | (2) |
a(a(b(x1))) | → | a(b(b(a(b(x1))))) | (5) |
b(a(a(x1))) | → | b(a(b(b(a(x1))))) | (10) |
{b(☐), a(☐)}
We obtain the transformed TRSb(a(a(x1))) | → | b(a(b(a(x1)))) | (12) |
b(a(a(b(x1)))) | → | b(a(b(b(a(b(x1)))))) | (13) |
b(b(a(a(x1)))) | → | b(b(a(b(b(a(x1)))))) | (14) |
a(a(a(x1))) | → | a(a(b(a(x1)))) | (15) |
a(a(a(b(x1)))) | → | a(a(b(b(a(b(x1)))))) | (16) |
a(b(a(a(x1)))) | → | a(b(a(b(b(a(x1)))))) | (17) |
b(a(x1)) | → | b(b(x1)) | (18) |
b(a(b(x1))) | → | b(b(b(b(x1)))) | (19) |
b(a(a(a(x1)))) | → | b(a(a(b(a(a(x1)))))) | (20) |
b(a(b(a(x1)))) | → | b(b(a(b(b(a(x1)))))) | (21) |
b(a(b(b(x1)))) | → | b(b(b(b(b(b(x1)))))) | (22) |
b(b(a(x1))) | → | b(b(b(b(x1)))) | (23) |
b(a(b(a(x1)))) | → | b(a(b(b(a(b(x1)))))) | (24) |
b(b(b(a(x1)))) | → | b(b(b(b(b(b(x1)))))) | (25) |
a(a(x1)) | → | a(b(x1)) | (26) |
a(a(b(x1))) | → | a(b(b(b(x1)))) | (27) |
a(a(a(a(x1)))) | → | a(a(a(b(a(a(x1)))))) | (28) |
a(a(b(a(x1)))) | → | a(b(a(b(b(a(x1)))))) | (29) |
a(a(b(b(x1)))) | → | a(b(b(b(b(b(x1)))))) | (30) |
a(b(a(x1))) | → | a(b(b(b(x1)))) | (31) |
a(a(b(a(x1)))) | → | a(a(b(b(a(b(x1)))))) | (32) |
a(b(b(a(x1)))) | → | a(b(b(b(b(b(x1)))))) | (33) |
As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
[b(x1)] | = | 2x1 + 0 |
[a(x1)] | = | 2x1 + 1 |
a1(a1(a1(x1))) | → | a1(a0(b1(a1(x1)))) | (34) |
a1(a1(a0(x1))) | → | a1(a0(b1(a0(x1)))) | (35) |
b1(a1(a1(x1))) | → | b1(a0(b1(a1(x1)))) | (36) |
b1(a1(a0(x1))) | → | b1(a0(b1(a0(x1)))) | (37) |
a1(a1(a0(b1(x1)))) | → | a1(a0(b0(b1(a0(b1(x1)))))) | (38) |
a1(a1(a0(b0(x1)))) | → | a1(a0(b0(b1(a0(b0(x1)))))) | (39) |
b1(a1(a0(b1(x1)))) | → | b1(a0(b0(b1(a0(b1(x1)))))) | (40) |
b1(a1(a0(b0(x1)))) | → | b1(a0(b0(b1(a0(b0(x1)))))) | (41) |
a0(b1(a1(a1(x1)))) | → | a0(b1(a0(b0(b1(a1(x1)))))) | (42) |
a0(b1(a1(a0(x1)))) | → | a0(b1(a0(b0(b1(a0(x1)))))) | (43) |
b0(b1(a1(a1(x1)))) | → | b0(b1(a0(b0(b1(a1(x1)))))) | (44) |
b0(b1(a1(a0(x1)))) | → | b0(b1(a0(b0(b1(a0(x1)))))) | (45) |
a1(a1(x1)) | → | a0(b1(x1)) | (46) |
a1(a0(x1)) | → | a0(b0(x1)) | (47) |
b1(a1(x1)) | → | b0(b1(x1)) | (48) |
b1(a0(x1)) | → | b0(b0(x1)) | (49) |
a1(a0(b1(x1))) | → | a0(b0(b0(b1(x1)))) | (50) |
a1(a0(b0(x1))) | → | a0(b0(b0(b0(x1)))) | (51) |
b1(a0(b1(x1))) | → | b0(b0(b0(b1(x1)))) | (52) |
b1(a0(b0(x1))) | → | b0(b0(b0(b0(x1)))) | (53) |
a1(a1(a1(a1(x1)))) | → | a1(a1(a0(b1(a1(a1(x1)))))) | (54) |
a1(a1(a1(a0(x1)))) | → | a1(a1(a0(b1(a1(a0(x1)))))) | (55) |
b1(a1(a1(a1(x1)))) | → | b1(a1(a0(b1(a1(a1(x1)))))) | (56) |
b1(a1(a1(a0(x1)))) | → | b1(a1(a0(b1(a1(a0(x1)))))) | (57) |
a1(a0(b1(a1(x1)))) | → | a0(b1(a0(b0(b1(a1(x1)))))) | (58) |
a1(a0(b1(a0(x1)))) | → | a0(b1(a0(b0(b1(a0(x1)))))) | (59) |
b1(a0(b1(a1(x1)))) | → | b0(b1(a0(b0(b1(a1(x1)))))) | (60) |
b1(a0(b1(a0(x1)))) | → | b0(b1(a0(b0(b1(a0(x1)))))) | (61) |
a1(a0(b0(b1(x1)))) | → | a0(b0(b0(b0(b0(b1(x1)))))) | (62) |
a1(a0(b0(b0(x1)))) | → | a0(b0(b0(b0(b0(b0(x1)))))) | (63) |
b1(a0(b0(b1(x1)))) | → | b0(b0(b0(b0(b0(b1(x1)))))) | (64) |
b1(a0(b0(b0(x1)))) | → | b0(b0(b0(b0(b0(b0(x1)))))) | (65) |
a0(b1(a1(x1))) | → | a0(b0(b0(b1(x1)))) | (66) |
a0(b1(a0(x1))) | → | a0(b0(b0(b0(x1)))) | (67) |
b0(b1(a1(x1))) | → | b0(b0(b0(b1(x1)))) | (68) |
b0(b1(a0(x1))) | → | b0(b0(b0(b0(x1)))) | (69) |
a1(a0(b1(a1(x1)))) | → | a1(a0(b0(b1(a0(b1(x1)))))) | (70) |
a1(a0(b1(a0(x1)))) | → | a1(a0(b0(b1(a0(b0(x1)))))) | (71) |
b1(a0(b1(a1(x1)))) | → | b1(a0(b0(b1(a0(b1(x1)))))) | (72) |
b1(a0(b1(a0(x1)))) | → | b1(a0(b0(b1(a0(b0(x1)))))) | (73) |
a0(b0(b1(a1(x1)))) | → | a0(b0(b0(b0(b0(b1(x1)))))) | (74) |
a0(b0(b1(a0(x1)))) | → | a0(b0(b0(b0(b0(b0(x1)))))) | (75) |
b0(b0(b1(a1(x1)))) | → | b0(b0(b0(b0(b0(b1(x1)))))) | (76) |
b0(b0(b1(a0(x1)))) | → | b0(b0(b0(b0(b0(b0(x1)))))) | (77) |
[b0(x1)] | = |
x1 +
|
||||
[b1(x1)] | = |
x1 +
|
||||
[a0(x1)] | = |
x1 +
|
||||
[a1(x1)] | = |
x1 +
|
a1(a1(a1(x1))) | → | a1(a0(b1(a1(x1)))) | (34) |
a1(a1(a0(x1))) | → | a1(a0(b1(a0(x1)))) | (35) |
b1(a1(a1(x1))) | → | b1(a0(b1(a1(x1)))) | (36) |
b1(a1(a0(x1))) | → | b1(a0(b1(a0(x1)))) | (37) |
a1(a1(a0(b1(x1)))) | → | a1(a0(b0(b1(a0(b1(x1)))))) | (38) |
a1(a1(a0(b0(x1)))) | → | a1(a0(b0(b1(a0(b0(x1)))))) | (39) |
b1(a1(a0(b1(x1)))) | → | b1(a0(b0(b1(a0(b1(x1)))))) | (40) |
b1(a1(a0(b0(x1)))) | → | b1(a0(b0(b1(a0(b0(x1)))))) | (41) |
a0(b1(a1(a1(x1)))) | → | a0(b1(a0(b0(b1(a1(x1)))))) | (42) |
a0(b1(a1(a0(x1)))) | → | a0(b1(a0(b0(b1(a0(x1)))))) | (43) |
b0(b1(a1(a1(x1)))) | → | b0(b1(a0(b0(b1(a1(x1)))))) | (44) |
b0(b1(a1(a0(x1)))) | → | b0(b1(a0(b0(b1(a0(x1)))))) | (45) |
a1(a1(x1)) | → | a0(b1(x1)) | (46) |
a1(a0(x1)) | → | a0(b0(x1)) | (47) |
b1(a1(x1)) | → | b0(b1(x1)) | (48) |
a1(a0(b1(x1))) | → | a0(b0(b0(b1(x1)))) | (50) |
a1(a0(b0(x1))) | → | a0(b0(b0(b0(x1)))) | (51) |
a1(a0(b1(a1(x1)))) | → | a0(b1(a0(b0(b1(a1(x1)))))) | (58) |
a1(a0(b1(a0(x1)))) | → | a0(b1(a0(b0(b1(a0(x1)))))) | (59) |
a1(a0(b0(b1(x1)))) | → | a0(b0(b0(b0(b0(b1(x1)))))) | (62) |
a1(a0(b0(b0(x1)))) | → | a0(b0(b0(b0(b0(b0(x1)))))) | (63) |
a0(b1(a1(x1))) | → | a0(b0(b0(b1(x1)))) | (66) |
b0(b1(a1(x1))) | → | b0(b0(b0(b1(x1)))) | (68) |
a1(a0(b1(a1(x1)))) | → | a1(a0(b0(b1(a0(b1(x1)))))) | (70) |
b1(a0(b1(a1(x1)))) | → | b1(a0(b0(b1(a0(b1(x1)))))) | (72) |
a0(b0(b1(a1(x1)))) | → | a0(b0(b0(b0(b0(b1(x1)))))) | (74) |
b0(b0(b1(a1(x1)))) | → | b0(b0(b0(b0(b0(b1(x1)))))) | (76) |
There are no rules in the TRS. Hence, it is terminating.
{b(☐), a(☐)}
We obtain the transformed TRSb(a(x1)) | → | b(b(x1)) | (18) |
b(a(b(x1))) | → | b(b(b(b(x1)))) | (19) |
b(a(a(a(x1)))) | → | b(a(a(b(a(a(x1)))))) | (20) |
b(a(b(a(x1)))) | → | b(b(a(b(b(a(x1)))))) | (21) |
b(a(b(b(x1)))) | → | b(b(b(b(b(b(x1)))))) | (22) |
b(b(a(x1))) | → | b(b(b(b(x1)))) | (23) |
b(a(b(a(x1)))) | → | b(a(b(b(a(b(x1)))))) | (24) |
b(b(b(a(x1)))) | → | b(b(b(b(b(b(x1)))))) | (25) |
a(a(x1)) | → | a(b(x1)) | (26) |
a(a(b(x1))) | → | a(b(b(b(x1)))) | (27) |
a(a(a(a(x1)))) | → | a(a(a(b(a(a(x1)))))) | (28) |
a(a(b(a(x1)))) | → | a(b(a(b(b(a(x1)))))) | (29) |
a(a(b(b(x1)))) | → | a(b(b(b(b(b(x1)))))) | (30) |
a(b(a(x1))) | → | a(b(b(b(x1)))) | (31) |
a(a(b(a(x1)))) | → | a(a(b(b(a(b(x1)))))) | (32) |
a(b(b(a(x1)))) | → | a(b(b(b(b(b(x1)))))) | (33) |
{b(☐), a(☐)}
We obtain the transformed TRSb(b(a(x1))) | → | b(b(b(x1))) | (78) |
b(b(a(b(x1)))) | → | b(b(b(b(b(x1))))) | (79) |
b(b(a(a(a(x1))))) | → | b(b(a(a(b(a(a(x1))))))) | (80) |
b(b(a(b(a(x1))))) | → | b(b(b(a(b(b(a(x1))))))) | (81) |
b(b(a(b(b(x1))))) | → | b(b(b(b(b(b(b(x1))))))) | (82) |
b(b(b(a(x1)))) | → | b(b(b(b(b(x1))))) | (83) |
b(b(a(b(a(x1))))) | → | b(b(a(b(b(a(b(x1))))))) | (84) |
b(b(b(b(a(x1))))) | → | b(b(b(b(b(b(b(x1))))))) | (85) |
b(a(a(x1))) | → | b(a(b(x1))) | (86) |
b(a(a(b(x1)))) | → | b(a(b(b(b(x1))))) | (87) |
b(a(a(a(a(x1))))) | → | b(a(a(a(b(a(a(x1))))))) | (88) |
b(a(a(b(a(x1))))) | → | b(a(b(a(b(b(a(x1))))))) | (89) |
b(a(a(b(b(x1))))) | → | b(a(b(b(b(b(b(x1))))))) | (90) |
b(a(b(a(x1)))) | → | b(a(b(b(b(x1))))) | (91) |
b(a(a(b(a(x1))))) | → | b(a(a(b(b(a(b(x1))))))) | (92) |
b(a(b(b(a(x1))))) | → | b(a(b(b(b(b(b(x1))))))) | (93) |
a(b(a(x1))) | → | a(b(b(x1))) | (94) |
a(b(a(b(x1)))) | → | a(b(b(b(b(x1))))) | (95) |
a(b(a(a(a(x1))))) | → | a(b(a(a(b(a(a(x1))))))) | (96) |
a(b(a(b(a(x1))))) | → | a(b(b(a(b(b(a(x1))))))) | (97) |
a(b(a(b(b(x1))))) | → | a(b(b(b(b(b(b(x1))))))) | (98) |
a(b(b(a(x1)))) | → | a(b(b(b(b(x1))))) | (99) |
a(b(a(b(a(x1))))) | → | a(b(a(b(b(a(b(x1))))))) | (100) |
a(b(b(b(a(x1))))) | → | a(b(b(b(b(b(b(x1))))))) | (101) |
a(a(a(x1))) | → | a(a(b(x1))) | (102) |
a(a(a(b(x1)))) | → | a(a(b(b(b(x1))))) | (103) |
a(a(a(a(a(x1))))) | → | a(a(a(a(b(a(a(x1))))))) | (104) |
a(a(a(b(a(x1))))) | → | a(a(b(a(b(b(a(x1))))))) | (105) |
a(a(a(b(b(x1))))) | → | a(a(b(b(b(b(b(x1))))))) | (106) |
a(a(b(a(x1)))) | → | a(a(b(b(b(x1))))) | (107) |
a(a(a(b(a(x1))))) | → | a(a(a(b(b(a(b(x1))))))) | (108) |
a(a(b(b(a(x1))))) | → | a(a(b(b(b(b(b(x1))))))) | (109) |
As carrier we take the set {0,...,3}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 4):
[b(x1)] | = | 2x1 + 0 |
[a(x1)] | = | 2x1 + 1 |
There are 128 ruless (increase limit for explicit display).
[b0(x1)] | = |
x1 +
|
||||
[b2(x1)] | = |
x1 +
|
||||
[b1(x1)] | = |
x1 +
|
||||
[b3(x1)] | = |
x1 +
|
||||
[a0(x1)] | = |
x1 +
|
||||
[a2(x1)] | = |
x1 +
|
||||
[a1(x1)] | = |
x1 +
|
||||
[a3(x1)] | = |
x1 +
|
There are 128 ruless (increase limit for explicit display).
There are no rules in the TRS. Hence, it is terminating.