The rewrite relation of the following TRS is considered.
0(1(2(x1))) | → | 2(3(0(3(1(x1))))) | (1) |
0(0(0(2(x1)))) | → | 3(0(0(3(0(2(x1)))))) | (2) |
0(0(2(2(x1)))) | → | 2(3(0(0(3(2(x1)))))) | (3) |
0(1(1(2(x1)))) | → | 2(3(0(3(1(1(x1)))))) | (4) |
0(1(2(1(x1)))) | → | 0(1(2(4(1(3(x1)))))) | (5) |
0(1(2(2(x1)))) | → | 2(3(0(3(1(2(x1)))))) | (6) |
0(1(2(5(x1)))) | → | 2(0(5(3(1(x1))))) | (7) |
0(1(5(1(x1)))) | → | 1(0(3(5(3(1(x1)))))) | (8) |
0(1(5(2(x1)))) | → | 2(4(1(0(3(5(x1)))))) | (9) |
0(1(5(2(x1)))) | → | 2(4(3(1(0(5(x1)))))) | (10) |
0(1(5(2(x1)))) | → | 3(1(3(0(5(2(x1)))))) | (11) |
0(1(5(5(x1)))) | → | 1(3(0(5(5(x1))))) | (12) |
0(2(1(2(x1)))) | → | 2(2(3(0(3(1(x1)))))) | (13) |
0(2(5(2(x1)))) | → | 2(2(3(0(5(x1))))) | (14) |
1(1(4(5(x1)))) | → | 5(4(1(3(1(x1))))) | (15) |
1(5(1(5(x1)))) | → | 1(3(5(5(3(1(x1)))))) | (16) |
1(5(5(1(x1)))) | → | 1(5(3(1(5(3(x1)))))) | (17) |
2(0(1(2(x1)))) | → | 2(2(3(0(3(1(x1)))))) | (18) |
2(0(1(5(x1)))) | → | 2(1(3(0(5(x1))))) | (19) |
5(0(1(2(x1)))) | → | 3(0(5(3(1(2(x1)))))) | (20) |
5(0(1(2(x1)))) | → | 4(2(3(0(5(1(x1)))))) | (21) |
0(0(0(0(1(x1))))) | → | 0(0(1(0(0(3(x1)))))) | (22) |
0(0(1(2(5(x1))))) | → | 2(0(0(5(3(1(x1)))))) | (23) |
0(0(1(5(2(x1))))) | → | 0(1(0(3(5(2(x1)))))) | (24) |
0(1(0(4(5(x1))))) | → | 5(4(0(0(3(1(x1)))))) | (25) |
0(1(1(1(2(x1))))) | → | 1(0(3(1(1(2(x1)))))) | (26) |
0(1(2(1(5(x1))))) | → | 2(1(0(5(3(1(x1)))))) | (27) |
0(1(3(5(2(x1))))) | → | 3(0(4(1(5(2(x1)))))) | (28) |
0(1(4(2(5(x1))))) | → | 2(4(3(0(5(1(x1)))))) | (29) |
0(1(4(4(2(x1))))) | → | 1(0(4(4(4(2(x1)))))) | (30) |
0(1(5(0(1(x1))))) | → | 0(1(1(0(5(3(x1)))))) | (31) |
0(1(5(0(5(x1))))) | → | 3(5(1(0(5(0(x1)))))) | (32) |
0(2(4(2(1(x1))))) | → | 2(1(2(4(3(0(x1)))))) | (33) |
0(4(0(2(1(x1))))) | → | 3(0(4(1(2(0(x1)))))) | (34) |
0(5(0(1(5(x1))))) | → | 0(5(0(5(3(1(x1)))))) | (35) |
1(0(0(1(5(x1))))) | → | 5(1(0(0(3(1(x1)))))) | (36) |
1(0(1(4(5(x1))))) | → | 1(4(4(1(0(5(x1)))))) | (37) |
1(4(0(1(5(x1))))) | → | 1(4(1(3(0(5(x1)))))) | (38) |
2(0(1(5(2(x1))))) | → | 2(1(0(3(5(2(x1)))))) | (39) |
2(0(4(2(1(x1))))) | → | 2(1(4(2(3(0(x1)))))) | (40) |
2(0(5(1(2(x1))))) | → | 0(3(1(5(2(2(x1)))))) | (41) |
2(2(1(1(2(x1))))) | → | 2(2(1(3(1(2(x1)))))) | (42) |
2(5(1(5(2(x1))))) | → | 2(4(1(5(5(2(x1)))))) | (43) |
5(0(1(4(5(x1))))) | → | 4(1(0(3(5(5(x1)))))) | (44) |
5(1(0(1(5(x1))))) | → | 3(1(5(1(0(5(x1)))))) | (45) |
5(4(0(2(1(x1))))) | → | 4(1(3(5(2(0(x1)))))) | (46) |
5(5(1(4(5(x1))))) | → | 5(4(1(3(5(5(x1)))))) | (47) |
There are 166 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
5#(5(1(4(5(x1))))) | → | 5#(5(x1)) | (211) |
5#(4(0(2(1(x1))))) | → | 5#(2(0(x1))) | (209) |
5#(4(0(2(1(x1))))) | → | 2#(0(x1)) | (208) |
2#(5(1(5(2(x1))))) | → | 1#(5(5(2(x1)))) | (198) |
1#(4(0(1(5(x1))))) | → | 0#(5(x1)) | (180) |
0#(5(0(1(5(x1))))) | → | 1#(x1) | (167) |
1#(0(1(4(5(x1))))) | → | 1#(0(5(x1))) | (178) |
1#(0(1(4(5(x1))))) | → | 0#(5(x1)) | (177) |
0#(4(0(2(1(x1))))) | → | 1#(2(0(x1))) | (165) |
1#(0(0(1(5(x1))))) | → | 1#(x1) | (172) |
1#(5(1(5(x1)))) | → | 1#(x1) | (96) |
1#(1(4(5(x1)))) | → | 1#(x1) | (93) |
0#(4(0(2(1(x1))))) | → | 2#(0(x1)) | (164) |
2#(5(1(5(2(x1))))) | → | 5#(5(2(x1))) | (197) |
5#(4(0(2(1(x1))))) | → | 0#(x1) | (207) |
0#(4(0(2(1(x1))))) | → | 0#(x1) | (163) |
0#(2(4(2(1(x1))))) | → | 0#(x1) | (159) |
0#(1(5(0(5(x1))))) | → | 5#(1(0(5(0(x1))))) | (158) |
5#(1(0(1(5(x1))))) | → | 1#(5(1(0(5(x1))))) | (206) |
5#(1(0(1(5(x1))))) | → | 5#(1(0(5(x1)))) | (205) |
5#(1(0(1(5(x1))))) | → | 1#(0(5(x1))) | (204) |
5#(1(0(1(5(x1))))) | → | 0#(5(x1)) | (203) |
0#(1(5(0(5(x1))))) | → | 1#(0(5(0(x1)))) | (157) |
0#(1(5(0(5(x1))))) | → | 0#(5(0(x1))) | (156) |
0#(1(5(0(5(x1))))) | → | 5#(0(x1)) | (155) |
5#(0(1(4(5(x1))))) | → | 5#(5(x1)) | (200) |
5#(0(1(2(x1)))) | → | 0#(5(1(x1))) | (115) |
5#(0(1(2(x1)))) | → | 5#(1(x1)) | (114) |
5#(0(1(2(x1)))) | → | 1#(x1) | (113) |
0#(1(5(0(5(x1))))) | → | 0#(x1) | (154) |
0#(1(4(2(5(x1))))) | → | 0#(5(1(x1))) | (145) |
0#(1(4(2(5(x1))))) | → | 5#(1(x1)) | (144) |
0#(1(4(2(5(x1))))) | → | 1#(x1) | (143) |
0#(1(3(5(2(x1))))) | → | 1#(5(2(x1))) | (141) |
0#(1(2(1(5(x1))))) | → | 1#(x1) | (136) |
0#(1(0(4(5(x1))))) | → | 1#(x1) | (130) |
0#(0(1(2(5(x1))))) | → | 1#(x1) | (122) |
0#(2(5(2(x1)))) | → | 0#(5(x1)) | (90) |
0#(2(5(2(x1)))) | → | 5#(x1) | (89) |
0#(2(1(2(x1)))) | → | 1#(x1) | (85) |
0#(1(5(5(x1)))) | → | 0#(5(5(x1))) | (83) |
0#(1(5(2(x1)))) | → | 0#(5(2(x1))) | (81) |
0#(1(5(2(x1)))) | → | 1#(0(5(x1))) | (79) |
0#(1(5(2(x1)))) | → | 0#(5(x1)) | (78) |
0#(1(5(2(x1)))) | → | 5#(x1) | (74) |
0#(1(2(5(x1)))) | → | 1#(x1) | (67) |
0#(1(2(2(x1)))) | → | 1#(2(x1)) | (64) |
0#(1(2(1(x1)))) | → | 0#(1(2(4(1(3(x1)))))) | (63) |
0#(1(2(x1))) | → | 1#(x1) | (48) |
0#(1(1(2(x1)))) | → | 1#(1(x1)) | (57) |
0#(1(1(2(x1)))) | → | 1#(x1) | (56) |
2#(0(5(1(2(x1))))) | → | 1#(5(2(2(x1)))) | (192) |
2#(0(5(1(2(x1))))) | → | 5#(2(2(x1))) | (191) |
2#(0(5(1(2(x1))))) | → | 2#(2(x1)) | (190) |
2#(0(4(2(1(x1))))) | → | 0#(x1) | (186) |
2#(0(1(5(x1)))) | → | 0#(5(x1)) | (108) |
2#(0(1(2(x1)))) | → | 1#(x1) | (104) |
prec(5#) | = | 0 | stat(5#) | = | lex | |
prec(2#) | = | 0 | stat(2#) | = | lex | |
prec(1#) | = | 0 | stat(1#) | = | lex | |
prec(0#) | = | 0 | stat(0#) | = | lex | |
prec(5) | = | 0 | stat(5) | = | lex | |
prec(4) | = | 0 | stat(4) | = | lex | |
prec(3) | = | 0 | stat(3) | = | lex | |
prec(0) | = | 0 | stat(0) | = | lex | |
prec(1) | = | 0 | stat(1) | = | lex | |
prec(2) | = | 0 | stat(2) | = | lex |
π(5#) | = | 1 |
π(2#) | = | 1 |
π(1#) | = | 1 |
π(0#) | = | 1 |
π(5) | = | 1 |
π(4) | = | 1 |
π(3) | = | 1 |
π(0) | = | 1 |
π(1) | = | [1] |
π(2) | = | 1 |
0(1(2(x1))) | → | 2(3(0(3(1(x1))))) | (1) |
0(0(0(2(x1)))) | → | 3(0(0(3(0(2(x1)))))) | (2) |
0(0(2(2(x1)))) | → | 2(3(0(0(3(2(x1)))))) | (3) |
0(1(1(2(x1)))) | → | 2(3(0(3(1(1(x1)))))) | (4) |
0(1(2(1(x1)))) | → | 0(1(2(4(1(3(x1)))))) | (5) |
0(1(2(2(x1)))) | → | 2(3(0(3(1(2(x1)))))) | (6) |
0(1(2(5(x1)))) | → | 2(0(5(3(1(x1))))) | (7) |
0(1(5(1(x1)))) | → | 1(0(3(5(3(1(x1)))))) | (8) |
0(1(5(2(x1)))) | → | 2(4(1(0(3(5(x1)))))) | (9) |
0(1(5(2(x1)))) | → | 2(4(3(1(0(5(x1)))))) | (10) |
0(1(5(2(x1)))) | → | 3(1(3(0(5(2(x1)))))) | (11) |
0(1(5(5(x1)))) | → | 1(3(0(5(5(x1))))) | (12) |
0(2(1(2(x1)))) | → | 2(2(3(0(3(1(x1)))))) | (13) |
0(2(5(2(x1)))) | → | 2(2(3(0(5(x1))))) | (14) |
1(1(4(5(x1)))) | → | 5(4(1(3(1(x1))))) | (15) |
1(5(1(5(x1)))) | → | 1(3(5(5(3(1(x1)))))) | (16) |
1(5(5(1(x1)))) | → | 1(5(3(1(5(3(x1)))))) | (17) |
2(0(1(2(x1)))) | → | 2(2(3(0(3(1(x1)))))) | (18) |
2(0(1(5(x1)))) | → | 2(1(3(0(5(x1))))) | (19) |
5(0(1(2(x1)))) | → | 3(0(5(3(1(2(x1)))))) | (20) |
5(0(1(2(x1)))) | → | 4(2(3(0(5(1(x1)))))) | (21) |
0(0(0(0(1(x1))))) | → | 0(0(1(0(0(3(x1)))))) | (22) |
0(0(1(2(5(x1))))) | → | 2(0(0(5(3(1(x1)))))) | (23) |
0(0(1(5(2(x1))))) | → | 0(1(0(3(5(2(x1)))))) | (24) |
0(1(0(4(5(x1))))) | → | 5(4(0(0(3(1(x1)))))) | (25) |
0(1(1(1(2(x1))))) | → | 1(0(3(1(1(2(x1)))))) | (26) |
0(1(2(1(5(x1))))) | → | 2(1(0(5(3(1(x1)))))) | (27) |
0(1(3(5(2(x1))))) | → | 3(0(4(1(5(2(x1)))))) | (28) |
0(1(4(2(5(x1))))) | → | 2(4(3(0(5(1(x1)))))) | (29) |
0(1(4(4(2(x1))))) | → | 1(0(4(4(4(2(x1)))))) | (30) |
0(1(5(0(1(x1))))) | → | 0(1(1(0(5(3(x1)))))) | (31) |
0(1(5(0(5(x1))))) | → | 3(5(1(0(5(0(x1)))))) | (32) |
0(2(4(2(1(x1))))) | → | 2(1(2(4(3(0(x1)))))) | (33) |
0(4(0(2(1(x1))))) | → | 3(0(4(1(2(0(x1)))))) | (34) |
0(5(0(1(5(x1))))) | → | 0(5(0(5(3(1(x1)))))) | (35) |
1(0(0(1(5(x1))))) | → | 5(1(0(0(3(1(x1)))))) | (36) |
1(0(1(4(5(x1))))) | → | 1(4(4(1(0(5(x1)))))) | (37) |
1(4(0(1(5(x1))))) | → | 1(4(1(3(0(5(x1)))))) | (38) |
2(0(1(5(2(x1))))) | → | 2(1(0(3(5(2(x1)))))) | (39) |
2(0(4(2(1(x1))))) | → | 2(1(4(2(3(0(x1)))))) | (40) |
2(0(5(1(2(x1))))) | → | 0(3(1(5(2(2(x1)))))) | (41) |
2(2(1(1(2(x1))))) | → | 2(2(1(3(1(2(x1)))))) | (42) |
2(5(1(5(2(x1))))) | → | 2(4(1(5(5(2(x1)))))) | (43) |
5(0(1(4(5(x1))))) | → | 4(1(0(3(5(5(x1)))))) | (44) |
5(1(0(1(5(x1))))) | → | 3(1(5(1(0(5(x1)))))) | (45) |
5(4(0(2(1(x1))))) | → | 4(1(3(5(2(0(x1)))))) | (46) |
5(5(1(4(5(x1))))) | → | 5(4(1(3(5(5(x1)))))) | (47) |
5#(5(1(4(5(x1))))) | → | 5#(5(x1)) | (211) |
5#(4(0(2(1(x1))))) | → | 5#(2(0(x1))) | (209) |
5#(4(0(2(1(x1))))) | → | 2#(0(x1)) | (208) |
2#(5(1(5(2(x1))))) | → | 1#(5(5(2(x1)))) | (198) |
1#(4(0(1(5(x1))))) | → | 0#(5(x1)) | (180) |
0#(5(0(1(5(x1))))) | → | 1#(x1) | (167) |
1#(0(1(4(5(x1))))) | → | 1#(0(5(x1))) | (178) |
1#(0(1(4(5(x1))))) | → | 0#(5(x1)) | (177) |
0#(4(0(2(1(x1))))) | → | 1#(2(0(x1))) | (165) |
1#(0(0(1(5(x1))))) | → | 1#(x1) | (172) |
1#(5(1(5(x1)))) | → | 1#(x1) | (96) |
1#(1(4(5(x1)))) | → | 1#(x1) | (93) |
0#(4(0(2(1(x1))))) | → | 2#(0(x1)) | (164) |
2#(5(1(5(2(x1))))) | → | 5#(5(2(x1))) | (197) |
5#(4(0(2(1(x1))))) | → | 0#(x1) | (207) |
0#(4(0(2(1(x1))))) | → | 0#(x1) | (163) |
0#(2(4(2(1(x1))))) | → | 0#(x1) | (159) |
5#(1(0(1(5(x1))))) | → | 1#(5(1(0(5(x1))))) | (206) |
5#(1(0(1(5(x1))))) | → | 5#(1(0(5(x1)))) | (205) |
5#(1(0(1(5(x1))))) | → | 1#(0(5(x1))) | (204) |
5#(1(0(1(5(x1))))) | → | 0#(5(x1)) | (203) |
0#(1(5(0(5(x1))))) | → | 1#(0(5(0(x1)))) | (157) |
0#(1(5(0(5(x1))))) | → | 0#(5(0(x1))) | (156) |
0#(1(5(0(5(x1))))) | → | 5#(0(x1)) | (155) |
5#(0(1(4(5(x1))))) | → | 5#(5(x1)) | (200) |
5#(0(1(2(x1)))) | → | 1#(x1) | (113) |
0#(1(5(0(5(x1))))) | → | 0#(x1) | (154) |
0#(1(4(2(5(x1))))) | → | 1#(x1) | (143) |
0#(1(3(5(2(x1))))) | → | 1#(5(2(x1))) | (141) |
0#(1(2(1(5(x1))))) | → | 1#(x1) | (136) |
0#(1(0(4(5(x1))))) | → | 1#(x1) | (130) |
0#(0(1(2(5(x1))))) | → | 1#(x1) | (122) |
0#(2(1(2(x1)))) | → | 1#(x1) | (85) |
0#(1(5(5(x1)))) | → | 0#(5(5(x1))) | (83) |
0#(1(5(2(x1)))) | → | 0#(5(2(x1))) | (81) |
0#(1(5(2(x1)))) | → | 1#(0(5(x1))) | (79) |
0#(1(5(2(x1)))) | → | 0#(5(x1)) | (78) |
0#(1(5(2(x1)))) | → | 5#(x1) | (74) |
0#(1(2(5(x1)))) | → | 1#(x1) | (67) |
0#(1(2(2(x1)))) | → | 1#(2(x1)) | (64) |
0#(1(2(x1))) | → | 1#(x1) | (48) |
0#(1(1(2(x1)))) | → | 1#(1(x1)) | (57) |
0#(1(1(2(x1)))) | → | 1#(x1) | (56) |
2#(0(5(1(2(x1))))) | → | 1#(5(2(2(x1)))) | (192) |
2#(0(5(1(2(x1))))) | → | 5#(2(2(x1))) | (191) |
2#(0(5(1(2(x1))))) | → | 2#(2(x1)) | (190) |
2#(0(4(2(1(x1))))) | → | 0#(x1) | (186) |
2#(0(1(5(x1)))) | → | 0#(5(x1)) | (108) |
2#(0(1(2(x1)))) | → | 1#(x1) | (104) |
The dependency pairs are split into 0 components.