The rewrite relation of the following TRS is considered.
0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
2(1(0(0(x1)))) | → | 1(1(0(2(0(x1))))) | (48) |
2(2(1(0(x1)))) | → | 0(1(2(2(0(x1))))) | (49) |
2(2(1(0(x1)))) | → | 0(2(2(0(1(x1))))) | (50) |
3(2(1(0(x1)))) | → | 3(1(0(2(0(x1))))) | (51) |
3(2(1(0(x1)))) | → | 1(3(3(2(0(x1))))) | (52) |
2(1(2(0(x1)))) | → | 1(0(2(2(0(x1))))) | (53) |
2(1(2(0(x1)))) | → | 1(2(2(2(0(x1))))) | (54) |
2(1(2(0(x1)))) | → | 1(1(2(2(2(0(x1)))))) | (55) |
2(2(3(0(x1)))) | → | 2(2(0(4(3(x1))))) | (56) |
2(2(3(0(x1)))) | → | 3(2(2(2(2(0(x1)))))) | (57) |
2(1(4(0(x1)))) | → | 4(1(2(2(0(x1))))) | (58) |
2(1(4(0(x1)))) | → | 1(0(2(0(4(x1))))) | (59) |
1(0(5(0(x1)))) | → | 1(5(2(0(2(0(x1)))))) | (60) |
5(0(5(0(x1)))) | → | 5(5(0(2(0(x1))))) | (61) |
1(2(5(0(x1)))) | → | 1(5(2(2(0(x1))))) | (62) |
5(2(5(0(x1)))) | → | 5(5(2(2(0(x1))))) | (63) |
2(4(5(0(x1)))) | → | 5(0(2(2(0(4(x1)))))) | (64) |
3(0(1(2(x1)))) | → | 1(3(2(2(0(4(x1)))))) | (65) |
4(0(1(2(x1)))) | → | 2(2(2(0(4(1(x1)))))) | (66) |
2(4(5(2(x1)))) | → | 5(2(2(0(4(x1))))) | (67) |
4(0(1(0(0(x1))))) | → | 4(1(0(2(0(0(x1)))))) | (68) |
2(4(5(0(0(x1))))) | → | 5(2(0(0(4(0(x1)))))) | (69) |
2(1(0(1(0(x1))))) | → | 1(4(1(0(2(0(x1)))))) | (70) |
3(0(2(1(0(x1))))) | → | 3(1(4(0(2(0(x1)))))) | (71) |
2(2(2(1(0(x1))))) | → | 2(1(2(2(2(0(x1)))))) | (72) |
2(3(2(1(0(x1))))) | → | 2(2(0(4(3(1(x1)))))) | (73) |
3(2(3(1(0(x1))))) | → | 1(3(3(2(0(0(x1)))))) | (74) |
2(4(3(1(0(x1))))) | → | 1(1(4(3(2(0(x1)))))) | (75) |
1(0(1(2(0(x1))))) | → | 1(1(0(2(0(0(x1)))))) | (76) |
2(2(1(2(0(x1))))) | → | 1(2(2(0(2(0(x1)))))) | (77) |
5(0(3(2(0(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (78) |
3(1(0(3(0(x1))))) | → | 3(1(3(4(0(0(x1)))))) | (79) |
1(4(0(3(0(x1))))) | → | 3(4(4(1(0(0(x1)))))) | (80) |
4(0(2(3(0(x1))))) | → | 4(3(2(0(0(4(x1)))))) | (81) |
3(2(5(4(0(x1))))) | → | 5(4(3(2(2(0(x1)))))) | (82) |
3(0(0(5(0(x1))))) | → | 5(0(3(0(2(0(x1)))))) | (83) |
2(1(0(5(0(x1))))) | → | 5(1(0(2(0(0(x1)))))) | (84) |
2(4(1(5(0(x1))))) | → | 5(4(1(0(2(0(x1)))))) | (85) |
1(5(2(5(0(x1))))) | → | 1(5(5(0(2(0(x1)))))) | (86) |
4(0(0(1(2(x1))))) | → | 2(0(0(4(4(1(x1)))))) | (87) |
3(0(0(5(2(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (88) |
1(0(3(5(2(x1))))) | → | 1(3(2(2(0(5(x1)))))) | (89) |
2(2(1(0(5(x1))))) | → | 2(0(2(0(1(5(x1)))))) | (90) |
2(1(0(2(5(x1))))) | → | 2(2(0(4(5(1(x1)))))) | (91) |
1(0(1(2(5(x1))))) | → | 1(5(1(3(2(0(x1)))))) | (92) |
1(0(3(2(5(x1))))) | → | 3(2(2(0(5(1(x1)))))) | (93) |
1(4(0(3(5(x1))))) | → | 1(3(2(0(5(4(x1)))))) | (94) |
There are 176 ruless (increase limit for explicit display).
The dependency pairs are split into 2 components.
3#(1(0(3(0(x1))))) | → | 3#(4(0(0(x1)))) | (206) |
3#(1(0(3(0(x1))))) | → | 3#(1(3(4(0(0(x1)))))) | (208) |
prec(3#) | = | 0 | stat(3#) | = | lex | |
prec(5) | = | 0 | stat(5) | = | lex | |
prec(4) | = | 0 | stat(4) | = | lex | |
prec(3) | = | 0 | stat(3) | = | lex | |
prec(0) | = | 0 | stat(0) | = | lex | |
prec(1) | = | 1 | stat(1) | = | lex | |
prec(2) | = | 0 | stat(2) | = | lex |
π(3#) | = | 1 |
π(5) | = | [] |
π(4) | = | [] |
π(3) | = | 1 |
π(0) | = | 1 |
π(1) | = | [] |
π(2) | = | 1 |
4(0(0(1(2(x1))))) | → | 2(0(0(4(4(1(x1)))))) | (87) |
1(0(5(0(x1)))) | → | 1(5(2(0(2(0(x1)))))) | (60) |
1(2(5(0(x1)))) | → | 1(5(2(2(0(x1))))) | (62) |
1(0(1(2(0(x1))))) | → | 1(1(0(2(0(0(x1)))))) | (76) |
1(4(0(3(0(x1))))) | → | 3(4(4(1(0(0(x1)))))) | (80) |
1(5(2(5(0(x1))))) | → | 1(5(5(0(2(0(x1)))))) | (86) |
1(0(3(5(2(x1))))) | → | 1(3(2(2(0(5(x1)))))) | (89) |
1(0(1(2(5(x1))))) | → | 1(5(1(3(2(0(x1)))))) | (92) |
1(0(3(2(5(x1))))) | → | 3(2(2(0(5(1(x1)))))) | (93) |
1(4(0(3(5(x1))))) | → | 1(3(2(0(5(4(x1)))))) | (94) |
5(0(5(0(x1)))) | → | 5(5(0(2(0(x1))))) | (61) |
5(2(5(0(x1)))) | → | 5(5(2(2(0(x1))))) | (63) |
5(0(3(2(0(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (78) |
4(0(1(2(x1)))) | → | 2(2(2(0(4(1(x1)))))) | (66) |
4(0(1(0(0(x1))))) | → | 4(1(0(2(0(0(x1)))))) | (68) |
4(0(2(3(0(x1))))) | → | 4(3(2(0(0(4(x1)))))) | (81) |
3(2(1(0(x1)))) | → | 3(1(0(2(0(x1))))) | (51) |
3(2(1(0(x1)))) | → | 1(3(3(2(0(x1))))) | (52) |
3(0(1(2(x1)))) | → | 1(3(2(2(0(4(x1)))))) | (65) |
3(0(2(1(0(x1))))) | → | 3(1(4(0(2(0(x1)))))) | (71) |
3(2(3(1(0(x1))))) | → | 1(3(3(2(0(0(x1)))))) | (74) |
3(1(0(3(0(x1))))) | → | 3(1(3(4(0(0(x1)))))) | (79) |
3(2(5(4(0(x1))))) | → | 5(4(3(2(2(0(x1)))))) | (82) |
3(0(0(5(0(x1))))) | → | 5(0(3(0(2(0(x1)))))) | (83) |
3(0(0(5(2(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (88) |
3#(1(0(3(0(x1))))) | → | 3#(4(0(0(x1)))) | (206) |
[4(x1)] | = | -∞ · x1 + 0 |
[3#(x1)] | = | 0 · x1 + 0 |
[1(x1)] | = | 0 · x1 + 0 |
[3(x1)] | = | -∞ · x1 + 0 |
[5(x1)] | = | -∞ · x1 + 0 |
[2(x1)] | = | 1 · x1 + 0 |
[0(x1)] | = | -∞ · x1 + 4 |
1(0(5(0(x1)))) | → | 1(5(2(0(2(0(x1)))))) | (60) |
1(2(5(0(x1)))) | → | 1(5(2(2(0(x1))))) | (62) |
1(0(1(2(0(x1))))) | → | 1(1(0(2(0(0(x1)))))) | (76) |
1(4(0(3(0(x1))))) | → | 3(4(4(1(0(0(x1)))))) | (80) |
1(5(2(5(0(x1))))) | → | 1(5(5(0(2(0(x1)))))) | (86) |
1(0(3(5(2(x1))))) | → | 1(3(2(2(0(5(x1)))))) | (89) |
1(0(1(2(5(x1))))) | → | 1(5(1(3(2(0(x1)))))) | (92) |
1(0(3(2(5(x1))))) | → | 3(2(2(0(5(1(x1)))))) | (93) |
1(4(0(3(5(x1))))) | → | 1(3(2(0(5(4(x1)))))) | (94) |
5(0(5(0(x1)))) | → | 5(5(0(2(0(x1))))) | (61) |
5(2(5(0(x1)))) | → | 5(5(2(2(0(x1))))) | (63) |
5(0(3(2(0(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (78) |
3(2(1(0(x1)))) | → | 3(1(0(2(0(x1))))) | (51) |
3(2(1(0(x1)))) | → | 1(3(3(2(0(x1))))) | (52) |
3(0(1(2(x1)))) | → | 1(3(2(2(0(4(x1)))))) | (65) |
3(0(2(1(0(x1))))) | → | 3(1(4(0(2(0(x1)))))) | (71) |
3(2(3(1(0(x1))))) | → | 1(3(3(2(0(0(x1)))))) | (74) |
3(1(0(3(0(x1))))) | → | 3(1(3(4(0(0(x1)))))) | (79) |
3(2(5(4(0(x1))))) | → | 5(4(3(2(2(0(x1)))))) | (82) |
3(0(0(5(0(x1))))) | → | 5(0(3(0(2(0(x1)))))) | (83) |
3(0(0(5(2(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (88) |
3#(1(0(3(0(x1))))) | → | 3#(1(3(4(0(0(x1)))))) | (208) |
There are no pairs anymore.
4#(0(0(1(2(x1))))) | → | 4#(4(1(x1))) | (238) |
4#(0(0(1(2(x1))))) | → | 1#(x1) | (236) |
1#(4(0(3(5(x1))))) | → | 4#(x1) | (266) |
4#(0(2(3(0(x1))))) | → | 4#(x1) | (213) |
4#(0(1(2(x1)))) | → | 1#(x1) | (155) |
1#(0(3(2(5(x1))))) | → | 1#(x1) | (261) |
prec(4#) | = | 0 | stat(4#) | = | lex | |
prec(1#) | = | 0 | stat(1#) | = | lex | |
prec(5) | = | 0 | stat(5) | = | lex | |
prec(4) | = | 0 | stat(4) | = | lex | |
prec(3) | = | 0 | stat(3) | = | lex | |
prec(0) | = | 0 | stat(0) | = | lex | |
prec(1) | = | 0 | stat(1) | = | lex | |
prec(2) | = | 0 | stat(2) | = | lex |
π(4#) | = | 1 |
π(1#) | = | 1 |
π(5) | = | 1 |
π(4) | = | 1 |
π(3) | = | 1 |
π(0) | = | 1 |
π(1) | = | [1] |
π(2) | = | 1 |
1(0(5(0(x1)))) | → | 1(5(2(0(2(0(x1)))))) | (60) |
1(2(5(0(x1)))) | → | 1(5(2(2(0(x1))))) | (62) |
1(0(1(2(0(x1))))) | → | 1(1(0(2(0(0(x1)))))) | (76) |
1(4(0(3(0(x1))))) | → | 3(4(4(1(0(0(x1)))))) | (80) |
1(5(2(5(0(x1))))) | → | 1(5(5(0(2(0(x1)))))) | (86) |
1(0(3(5(2(x1))))) | → | 1(3(2(2(0(5(x1)))))) | (89) |
1(0(1(2(5(x1))))) | → | 1(5(1(3(2(0(x1)))))) | (92) |
1(0(3(2(5(x1))))) | → | 3(2(2(0(5(1(x1)))))) | (93) |
1(4(0(3(5(x1))))) | → | 1(3(2(0(5(4(x1)))))) | (94) |
5(0(5(0(x1)))) | → | 5(5(0(2(0(x1))))) | (61) |
5(2(5(0(x1)))) | → | 5(5(2(2(0(x1))))) | (63) |
5(0(3(2(0(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (78) |
4(0(1(2(x1)))) | → | 2(2(2(0(4(1(x1)))))) | (66) |
4(0(1(0(0(x1))))) | → | 4(1(0(2(0(0(x1)))))) | (68) |
4(0(2(3(0(x1))))) | → | 4(3(2(0(0(4(x1)))))) | (81) |
4(0(0(1(2(x1))))) | → | 2(0(0(4(4(1(x1)))))) | (87) |
4#(0(0(1(2(x1))))) | → | 1#(x1) | (236) |
4#(0(1(2(x1)))) | → | 1#(x1) | (155) |
The dependency pairs are split into 2 components.
1#(0(3(2(5(x1))))) | → | 1#(x1) | (261) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
1#(0(3(2(5(x1))))) | → | 1#(x1) | (261) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
4#(0(0(1(2(x1))))) | → | 4#(4(1(x1))) | (238) |
4#(0(2(3(0(x1))))) | → | 4#(x1) | (213) |
prec(4#) | = | 0 | stat(4#) | = | lex | |
prec(5) | = | 0 | stat(5) | = | lex | |
prec(4) | = | 0 | stat(4) | = | lex | |
prec(3) | = | 0 | stat(3) | = | lex | |
prec(0) | = | 0 | stat(0) | = | lex | |
prec(1) | = | 1 | stat(1) | = | lex | |
prec(2) | = | 0 | stat(2) | = | lex |
π(4#) | = | 1 |
π(5) | = | [] |
π(4) | = | [] |
π(3) | = | 1 |
π(0) | = | 1 |
π(1) | = | [] |
π(2) | = | 1 |
4(0(1(2(x1)))) | → | 2(2(2(0(4(1(x1)))))) | (66) |
4(0(1(0(0(x1))))) | → | 4(1(0(2(0(0(x1)))))) | (68) |
4(0(2(3(0(x1))))) | → | 4(3(2(0(0(4(x1)))))) | (81) |
4(0(0(1(2(x1))))) | → | 2(0(0(4(4(1(x1)))))) | (87) |
4#(0(0(1(2(x1))))) | → | 4#(4(1(x1))) | (238) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
4#(0(2(3(0(x1))))) | → | 4#(x1) | (213) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.