The rewrite relation of the following TRS is considered.
0(1(2(x1))) | → | 0(2(1(0(x1)))) | (1) |
0(1(2(x1))) | → | 1(0(2(3(x1)))) | (2) |
0(1(2(x1))) | → | 0(2(4(1(5(x1))))) | (3) |
0(1(2(x1))) | → | 0(3(2(1(0(x1))))) | (4) |
0(1(2(x1))) | → | 1(0(3(2(3(x1))))) | (5) |
0(1(2(x1))) | → | 0(1(3(4(2(3(x1)))))) | (6) |
0(5(2(x1))) | → | 0(2(4(5(3(x1))))) | (7) |
0(5(2(x1))) | → | 5(4(2(3(0(4(x1)))))) | (8) |
2(0(1(x1))) | → | 3(0(2(1(x1)))) | (9) |
2(0(1(x1))) | → | 0(2(1(1(4(x1))))) | (10) |
2(0(1(x1))) | → | 0(3(2(4(1(x1))))) | (11) |
2(0(1(x1))) | → | 3(0(2(1(4(x1))))) | (12) |
2(0(1(x1))) | → | 0(2(2(3(4(1(x1)))))) | (13) |
2(0(1(x1))) | → | 0(3(2(3(1(1(x1)))))) | (14) |
2(0(1(x1))) | → | 4(0(4(2(1(4(x1)))))) | (15) |
2(5(1(x1))) | → | 0(2(1(5(1(x1))))) | (16) |
2(5(1(x1))) | → | 1(4(5(4(2(x1))))) | (17) |
2(5(1(x1))) | → | 5(0(2(1(4(x1))))) | (18) |
2(5(1(x1))) | → | 5(2(1(4(1(x1))))) | (19) |
2(5(1(x1))) | → | 1(5(0(2(4(1(x1)))))) | (20) |
2(5(1(x1))) | → | 5(2(1(1(1(1(x1)))))) | (21) |
0(1(2(1(x1)))) | → | 3(1(4(0(2(1(x1)))))) | (22) |
0(1(3(1(x1)))) | → | 5(0(3(1(1(x1))))) | (23) |
0(1(3(1(x1)))) | → | 1(0(3(4(2(1(x1)))))) | (24) |
0(1(5(1(x1)))) | → | 5(0(3(1(1(x1))))) | (25) |
0(2(1(2(x1)))) | → | 0(2(2(1(5(x1))))) | (26) |
0(2(5(1(x1)))) | → | 1(1(5(0(2(1(x1)))))) | (27) |
0(5(3(1(x1)))) | → | 0(1(4(4(3(5(x1)))))) | (28) |
0(5(5(2(x1)))) | → | 5(4(2(3(5(0(x1)))))) | (29) |
2(0(1(2(x1)))) | → | 0(2(3(2(1(1(x1)))))) | (30) |
2(0(1(2(x1)))) | → | 4(0(2(1(1(2(x1)))))) | (31) |
2(0(4(1(x1)))) | → | 3(0(2(4(1(x1))))) | (32) |
2(0(5(1(x1)))) | → | 5(4(2(1(0(x1))))) | (33) |
2(2(5(1(x1)))) | → | 3(2(2(4(5(1(x1)))))) | (34) |
2(4(0(1(x1)))) | → | 1(0(2(4(4(x1))))) | (35) |
2(4(0(1(x1)))) | → | 3(0(0(2(4(1(x1)))))) | (36) |
2(4(0(1(x1)))) | → | 5(4(0(2(1(1(x1)))))) | (37) |
2(5(2(1(x1)))) | → | 1(5(2(2(3(1(x1)))))) | (38) |
2(5(4(1(x1)))) | → | 4(5(2(1(4(4(x1)))))) | (39) |
2(5(5(1(x1)))) | → | 1(5(4(2(4(5(x1)))))) | (40) |
2(5(5(2(x1)))) | → | 5(5(2(3(2(x1))))) | (41) |
0(1(3(0(1(x1))))) | → | 0(3(1(0(1(1(x1)))))) | (42) |
0(2(4(3(1(x1))))) | → | 1(3(4(2(3(0(x1)))))) | (43) |
0(2(4(3(1(x1))))) | → | 4(0(3(2(1(0(x1)))))) | (44) |
0(2(5(3(1(x1))))) | → | 5(0(2(3(5(1(x1)))))) | (45) |
2(0(5(4(1(x1))))) | → | 0(4(5(3(2(1(x1)))))) | (46) |
2(2(0(1(2(x1))))) | → | 2(4(0(2(2(1(x1)))))) | (47) |
2(4(0(5(1(x1))))) | → | 1(4(5(0(4(2(x1)))))) | (48) |
2(4(2(3(1(x1))))) | → | 4(2(2(3(3(1(x1)))))) | (49) |
2(5(2(0(1(x1))))) | → | 0(2(4(1(5(2(x1)))))) | (50) |
0#(1(2(x1))) | → | 0#(x1) | (51) |
0#(1(2(x1))) | → | 2#(1(0(x1))) | (52) |
0#(1(2(x1))) | → | 0#(2(1(0(x1)))) | (53) |
0#(1(2(x1))) | → | 2#(3(x1)) | (54) |
0#(1(2(x1))) | → | 0#(2(3(x1))) | (55) |
0#(1(2(x1))) | → | 2#(4(1(5(x1)))) | (56) |
0#(1(2(x1))) | → | 0#(2(4(1(5(x1))))) | (57) |
0#(1(2(x1))) | → | 0#(3(2(1(0(x1))))) | (58) |
0#(1(2(x1))) | → | 0#(3(2(3(x1)))) | (59) |
0#(1(2(x1))) | → | 0#(1(3(4(2(3(x1)))))) | (60) |
0#(5(2(x1))) | → | 2#(4(5(3(x1)))) | (61) |
0#(5(2(x1))) | → | 0#(2(4(5(3(x1))))) | (62) |
0#(5(2(x1))) | → | 0#(4(x1)) | (63) |
0#(5(2(x1))) | → | 2#(3(0(4(x1)))) | (64) |
2#(0(1(x1))) | → | 2#(1(x1)) | (65) |
2#(0(1(x1))) | → | 0#(2(1(x1))) | (66) |
2#(0(1(x1))) | → | 2#(1(1(4(x1)))) | (67) |
2#(0(1(x1))) | → | 0#(2(1(1(4(x1))))) | (68) |
2#(0(1(x1))) | → | 2#(4(1(x1))) | (69) |
2#(0(1(x1))) | → | 0#(3(2(4(1(x1))))) | (70) |
2#(0(1(x1))) | → | 2#(1(4(x1))) | (71) |
2#(0(1(x1))) | → | 0#(2(1(4(x1)))) | (72) |
2#(0(1(x1))) | → | 2#(3(4(1(x1)))) | (73) |
2#(0(1(x1))) | → | 2#(2(3(4(1(x1))))) | (74) |
2#(0(1(x1))) | → | 0#(2(2(3(4(1(x1)))))) | (75) |
2#(0(1(x1))) | → | 2#(3(1(1(x1)))) | (76) |
2#(0(1(x1))) | → | 0#(3(2(3(1(1(x1)))))) | (77) |
2#(0(1(x1))) | → | 0#(4(2(1(4(x1))))) | (78) |
2#(5(1(x1))) | → | 2#(1(5(1(x1)))) | (79) |
2#(5(1(x1))) | → | 0#(2(1(5(1(x1))))) | (80) |
2#(5(1(x1))) | → | 2#(x1) | (81) |
2#(5(1(x1))) | → | 2#(1(4(x1))) | (82) |
2#(5(1(x1))) | → | 0#(2(1(4(x1)))) | (83) |
2#(5(1(x1))) | → | 2#(1(4(1(x1)))) | (84) |
2#(5(1(x1))) | → | 2#(4(1(x1))) | (85) |
2#(5(1(x1))) | → | 0#(2(4(1(x1)))) | (86) |
2#(5(1(x1))) | → | 2#(1(1(1(1(x1))))) | (87) |
0#(1(2(1(x1)))) | → | 0#(2(1(x1))) | (88) |
0#(1(3(1(x1)))) | → | 0#(3(1(1(x1)))) | (89) |
0#(1(3(1(x1)))) | → | 2#(1(x1)) | (90) |
0#(1(3(1(x1)))) | → | 0#(3(4(2(1(x1))))) | (91) |
0#(1(5(1(x1)))) | → | 0#(3(1(1(x1)))) | (92) |
0#(2(1(2(x1)))) | → | 2#(1(5(x1))) | (93) |
0#(2(1(2(x1)))) | → | 2#(2(1(5(x1)))) | (94) |
0#(2(1(2(x1)))) | → | 0#(2(2(1(5(x1))))) | (95) |
0#(2(5(1(x1)))) | → | 2#(1(x1)) | (96) |
0#(2(5(1(x1)))) | → | 0#(2(1(x1))) | (97) |
0#(5(3(1(x1)))) | → | 0#(1(4(4(3(5(x1)))))) | (98) |
0#(5(5(2(x1)))) | → | 0#(x1) | (99) |
0#(5(5(2(x1)))) | → | 2#(3(5(0(x1)))) | (100) |
2#(0(1(2(x1)))) | → | 2#(1(1(x1))) | (101) |
2#(0(1(2(x1)))) | → | 2#(3(2(1(1(x1))))) | (102) |
2#(0(1(2(x1)))) | → | 0#(2(3(2(1(1(x1)))))) | (103) |
2#(0(1(2(x1)))) | → | 2#(1(1(2(x1)))) | (104) |
2#(0(1(2(x1)))) | → | 0#(2(1(1(2(x1))))) | (105) |
2#(0(4(1(x1)))) | → | 2#(4(1(x1))) | (106) |
2#(0(4(1(x1)))) | → | 0#(2(4(1(x1)))) | (107) |
2#(0(5(1(x1)))) | → | 0#(x1) | (108) |
2#(0(5(1(x1)))) | → | 2#(1(0(x1))) | (109) |
2#(2(5(1(x1)))) | → | 2#(4(5(1(x1)))) | (110) |
2#(2(5(1(x1)))) | → | 2#(2(4(5(1(x1))))) | (111) |
2#(4(0(1(x1)))) | → | 2#(4(4(x1))) | (112) |
2#(4(0(1(x1)))) | → | 0#(2(4(4(x1)))) | (113) |
2#(4(0(1(x1)))) | → | 2#(4(1(x1))) | (114) |
2#(4(0(1(x1)))) | → | 0#(2(4(1(x1)))) | (115) |
2#(4(0(1(x1)))) | → | 0#(0(2(4(1(x1))))) | (116) |
2#(4(0(1(x1)))) | → | 2#(1(1(x1))) | (117) |
2#(4(0(1(x1)))) | → | 0#(2(1(1(x1)))) | (118) |
2#(5(2(1(x1)))) | → | 2#(3(1(x1))) | (119) |
2#(5(2(1(x1)))) | → | 2#(2(3(1(x1)))) | (120) |
2#(5(4(1(x1)))) | → | 2#(1(4(4(x1)))) | (121) |
2#(5(5(1(x1)))) | → | 2#(4(5(x1))) | (122) |
2#(5(5(2(x1)))) | → | 2#(3(2(x1))) | (123) |
0#(1(3(0(1(x1))))) | → | 0#(1(1(x1))) | (124) |
0#(1(3(0(1(x1))))) | → | 0#(3(1(0(1(1(x1)))))) | (125) |
0#(2(4(3(1(x1))))) | → | 0#(x1) | (126) |
0#(2(4(3(1(x1))))) | → | 2#(3(0(x1))) | (127) |
0#(2(4(3(1(x1))))) | → | 2#(1(0(x1))) | (128) |
0#(2(4(3(1(x1))))) | → | 0#(3(2(1(0(x1))))) | (129) |
0#(2(5(3(1(x1))))) | → | 2#(3(5(1(x1)))) | (130) |
0#(2(5(3(1(x1))))) | → | 0#(2(3(5(1(x1))))) | (131) |
2#(0(5(4(1(x1))))) | → | 2#(1(x1)) | (132) |
2#(0(5(4(1(x1))))) | → | 0#(4(5(3(2(1(x1)))))) | (133) |
2#(2(0(1(2(x1))))) | → | 2#(1(x1)) | (134) |
2#(2(0(1(2(x1))))) | → | 2#(2(1(x1))) | (135) |
2#(2(0(1(2(x1))))) | → | 0#(2(2(1(x1)))) | (136) |
2#(2(0(1(2(x1))))) | → | 2#(4(0(2(2(1(x1)))))) | (137) |
2#(4(0(5(1(x1))))) | → | 2#(x1) | (138) |
2#(4(0(5(1(x1))))) | → | 0#(4(2(x1))) | (139) |
2#(4(2(3(1(x1))))) | → | 2#(3(3(1(x1)))) | (140) |
2#(4(2(3(1(x1))))) | → | 2#(2(3(3(1(x1))))) | (141) |
2#(5(2(0(1(x1))))) | → | 2#(x1) | (142) |
2#(5(2(0(1(x1))))) | → | 2#(4(1(5(2(x1))))) | (143) |
2#(5(2(0(1(x1))))) | → | 0#(2(4(1(5(2(x1)))))) | (144) |
The dependency pairs are split into 2 components.
2#(4(0(5(1(x1))))) | → | 2#(x1) | (138) |
2#(5(2(0(1(x1))))) | → | 2#(x1) | (142) |
2#(5(1(x1))) | → | 2#(x1) | (81) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
2#(4(0(5(1(x1))))) | → | 2#(x1) | (138) |
1 | > | 1 | |
2#(5(2(0(1(x1))))) | → | 2#(x1) | (142) |
1 | > | 1 | |
2#(5(1(x1))) | → | 2#(x1) | (81) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
0#(2(4(3(1(x1))))) | → | 0#(x1) | (126) |
0#(5(5(2(x1)))) | → | 0#(x1) | (99) |
0#(1(2(x1))) | → | 0#(x1) | (51) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
0#(2(4(3(1(x1))))) | → | 0#(x1) | (126) |
1 | > | 1 | |
0#(5(5(2(x1)))) | → | 0#(x1) | (99) |
1 | > | 1 | |
0#(1(2(x1))) | → | 0#(x1) | (51) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.