Certification Problem

Input (TPDB SRS_Standard/ICFP_2010/264033)

The rewrite relation of the following TRS is considered.

0(0(1(0(2(x1))))) 0(0(1(2(2(x1))))) (1)
0(0(1(0(2(x1))))) 0(0(2(1(2(x1))))) (2)
0(0(1(0(2(x1))))) 0(1(0(2(2(x1))))) (3)
0(0(1(0(2(x1))))) 0(1(1(2(2(x1))))) (4)
0(0(1(0(2(x1))))) 0(1(2(0(2(x1))))) (5)
0(0(1(0(2(x1))))) 0(1(2(2(0(x1))))) (6)
0(0(1(0(2(x1))))) 0(1(2(2(2(x1))))) (7)
0(0(1(0(2(x1))))) 0(2(1(0(2(x1))))) (8)
0(0(1(0(2(x1))))) 0(2(1(2(2(x1))))) (9)
0(0(1(0(2(x1))))) 0(2(2(1(0(x1))))) (10)
0(0(1(0(2(x1))))) 0(2(2(1(2(x1))))) (11)
0(0(1(0(2(x1))))) 1(0(0(2(2(x1))))) (12)
0(0(1(0(2(x1))))) 1(0(2(0(2(x1))))) (13)
0(0(1(0(2(x1))))) 1(0(2(2(0(x1))))) (14)
0(0(1(0(2(x1))))) 1(0(2(2(2(x1))))) (15)
0(0(1(0(2(x1))))) 1(1(0(2(2(x1))))) (16)
0(0(1(0(2(x1))))) 1(2(0(2(2(x1))))) (17)
0(0(1(0(2(x1))))) 1(2(1(0(2(x1))))) (18)
0(0(1(0(2(x1))))) 1(2(2(0(2(x1))))) (19)
0(0(1(0(2(x1))))) 1(2(2(2(0(x1))))) (20)
0(0(1(0(2(x1))))) 2(1(0(2(2(x1))))) (21)
0(0(1(0(2(x1))))) 2(2(1(0(2(x1))))) (22)
0(0(1(0(2(x1))))) 2(2(2(1(0(x1))))) (23)
0(1(2(0(2(x1))))) 0(1(0(2(2(x1))))) (24)
0(1(2(0(2(x1))))) 0(1(1(2(2(x1))))) (25)
0(1(2(0(2(x1))))) 0(1(2(2(2(x1))))) (26)
0(1(2(0(2(x1))))) 0(2(1(0(2(x1))))) (27)
0(1(2(0(2(x1))))) 0(2(1(2(2(x1))))) (28)
0(1(2(0(2(x1))))) 0(2(2(1(0(x1))))) (29)
0(1(2(0(2(x1))))) 0(2(2(1(2(x1))))) (30)
0(1(2(0(2(x1))))) 1(0(2(2(2(x1))))) (31)
0(1(2(0(2(x1))))) 1(2(0(2(2(x1))))) (32)
0(1(2(0(2(x1))))) 1(2(2(0(2(x1))))) (33)
0(1(2(0(2(x1))))) 1(2(2(2(0(x1))))) (34)
1(0(1(0(2(x1))))) 0(1(2(2(2(x1))))) (35)
1(0(1(0(2(x1))))) 0(2(1(2(2(x1))))) (36)
1(0(1(0(2(x1))))) 1(0(0(2(2(x1))))) (37)
1(0(1(0(2(x1))))) 1(0(1(2(2(x1))))) (38)
1(0(1(0(2(x1))))) 1(0(2(0(2(x1))))) (39)
1(0(1(0(2(x1))))) 1(0(2(1(2(x1))))) (40)
1(0(1(0(2(x1))))) 1(0(2(2(0(x1))))) (41)
1(0(1(0(2(x1))))) 1(0(2(2(2(x1))))) (42)
1(0(1(0(2(x1))))) 1(1(0(2(2(x1))))) (43)
1(0(1(0(2(x1))))) 1(2(0(2(2(x1))))) (44)
1(0(1(0(2(x1))))) 1(2(1(0(2(x1))))) (45)
1(0(1(0(2(x1))))) 1(2(2(0(2(x1))))) (46)
1(0(1(0(2(x1))))) 1(2(2(2(0(x1))))) (47)
1(0(1(0(2(x1))))) 2(0(1(2(2(x1))))) (48)
1(0(1(0(2(x1))))) 2(0(2(1(2(x1))))) (49)
1(0(1(0(2(x1))))) 2(1(0(2(2(x1))))) (50)
1(0(1(0(2(x1))))) 2(1(2(0(2(x1))))) (51)
1(0(1(0(2(x1))))) 2(1(2(2(0(x1))))) (52)
1(0(1(0(2(x1))))) 2(2(0(1(2(x1))))) (53)
1(0(1(0(2(x1))))) 2(2(1(0(2(x1))))) (54)
1(0(1(0(2(x1))))) 2(2(1(2(0(x1))))) (55)
1(0(1(0(2(x1))))) 2(2(2(1(0(x1))))) (56)
1(0(2(0(2(x1))))) 1(0(2(2(2(x1))))) (57)
1(0(2(0(2(x1))))) 1(2(0(2(2(x1))))) (58)
1(0(2(0(2(x1))))) 1(2(2(0(2(x1))))) (59)
1(0(2(0(2(x1))))) 1(2(2(2(0(x1))))) (60)
1(0(2(0(2(x1))))) 2(1(0(2(2(x1))))) (61)
1(0(2(0(2(x1))))) 2(2(1(0(2(x1))))) (62)
1(1(2(0(2(x1))))) 0(1(2(2(2(x1))))) (63)
1(1(2(0(2(x1))))) 0(2(1(2(2(x1))))) (64)
1(1(2(0(2(x1))))) 0(2(2(1(2(x1))))) (65)
1(1(2(0(2(x1))))) 1(0(0(2(2(x1))))) (66)
1(1(2(0(2(x1))))) 1(0(1(2(2(x1))))) (67)
1(1(2(0(2(x1))))) 1(0(2(0(2(x1))))) (68)
1(1(2(0(2(x1))))) 1(0(2(1(2(x1))))) (69)
1(1(2(0(2(x1))))) 1(0(2(2(0(x1))))) (70)
1(1(2(0(2(x1))))) 1(0(2(2(2(x1))))) (71)
1(1(2(0(2(x1))))) 1(1(0(2(2(x1))))) (72)
1(1(2(0(2(x1))))) 1(2(0(2(2(x1))))) (73)
1(1(2(0(2(x1))))) 1(2(1(0(2(x1))))) (74)
1(1(2(0(2(x1))))) 1(2(2(0(2(x1))))) (75)
1(1(2(0(2(x1))))) 1(2(2(2(0(x1))))) (76)
1(1(2(0(2(x1))))) 2(0(1(2(2(x1))))) (77)
1(1(2(0(2(x1))))) 2(1(0(2(2(x1))))) (78)
1(1(2(0(2(x1))))) 2(1(2(0(2(x1))))) (79)
1(1(2(0(2(x1))))) 2(2(0(1(2(x1))))) (80)
1(1(2(0(2(x1))))) 2(2(1(0(2(x1))))) (81)
1(1(2(0(2(x1))))) 2(2(2(1(0(x1))))) (82)
1(2(2(0(2(x1))))) 1(0(2(2(2(x1))))) (83)
2(0(1(0(2(x1))))) 2(0(1(2(2(x1))))) (84)
2(0(1(0(2(x1))))) 2(0(2(1(2(x1))))) (85)
2(0(1(0(2(x1))))) 2(1(0(2(2(x1))))) (86)
2(0(1(0(2(x1))))) 2(1(2(0(2(x1))))) (87)
2(0(1(0(2(x1))))) 2(1(2(2(0(x1))))) (88)
2(0(1(0(2(x1))))) 2(2(0(1(2(x1))))) (89)
2(0(1(0(2(x1))))) 2(2(1(0(2(x1))))) (90)
2(0(1(0(2(x1))))) 2(2(1(2(0(x1))))) (91)
2(0(1(0(2(x1))))) 2(2(2(1(0(x1))))) (92)
2(1(1(0(2(x1))))) 2(0(1(0(2(x1))))) (93)
2(1(1(0(2(x1))))) 2(0(2(1(2(x1))))) (94)
2(1(1(0(2(x1))))) 2(1(2(0(2(x1))))) (95)
2(1(1(0(2(x1))))) 2(2(1(0(2(x1))))) (96)
2(1(2(0(2(x1))))) 2(0(1(2(2(x1))))) (97)
2(1(2(0(2(x1))))) 2(1(0(2(2(x1))))) (98)
2(1(2(0(2(x1))))) 2(2(1(0(2(x1))))) (99)
2(1(2(0(2(x1))))) 2(2(2(1(0(x1))))) (100)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[0(x1)] = 1 · x1 + -∞
[2(x1)] = 0 · x1 + -∞
[1(x1)] = 1 · x1 + -∞
all of the following rules can be deleted.
0(0(1(0(2(x1))))) 0(0(1(2(2(x1))))) (1)
0(0(1(0(2(x1))))) 0(0(2(1(2(x1))))) (2)
0(0(1(0(2(x1))))) 0(1(0(2(2(x1))))) (3)
0(0(1(0(2(x1))))) 0(1(1(2(2(x1))))) (4)
0(0(1(0(2(x1))))) 0(1(2(0(2(x1))))) (5)
0(0(1(0(2(x1))))) 0(1(2(2(0(x1))))) (6)
0(0(1(0(2(x1))))) 0(1(2(2(2(x1))))) (7)
0(0(1(0(2(x1))))) 0(2(1(0(2(x1))))) (8)
0(0(1(0(2(x1))))) 0(2(1(2(2(x1))))) (9)
0(0(1(0(2(x1))))) 0(2(2(1(0(x1))))) (10)
0(0(1(0(2(x1))))) 0(2(2(1(2(x1))))) (11)
0(0(1(0(2(x1))))) 1(0(0(2(2(x1))))) (12)
0(0(1(0(2(x1))))) 1(0(2(0(2(x1))))) (13)
0(0(1(0(2(x1))))) 1(0(2(2(0(x1))))) (14)
0(0(1(0(2(x1))))) 1(0(2(2(2(x1))))) (15)
0(0(1(0(2(x1))))) 1(1(0(2(2(x1))))) (16)
0(0(1(0(2(x1))))) 1(2(0(2(2(x1))))) (17)
0(0(1(0(2(x1))))) 1(2(1(0(2(x1))))) (18)
0(0(1(0(2(x1))))) 1(2(2(0(2(x1))))) (19)
0(0(1(0(2(x1))))) 1(2(2(2(0(x1))))) (20)
0(0(1(0(2(x1))))) 2(1(0(2(2(x1))))) (21)
0(0(1(0(2(x1))))) 2(2(1(0(2(x1))))) (22)
0(0(1(0(2(x1))))) 2(2(2(1(0(x1))))) (23)
0(1(2(0(2(x1))))) 0(1(2(2(2(x1))))) (26)
0(1(2(0(2(x1))))) 0(2(1(2(2(x1))))) (28)
0(1(2(0(2(x1))))) 0(2(2(1(2(x1))))) (30)
0(1(2(0(2(x1))))) 1(0(2(2(2(x1))))) (31)
0(1(2(0(2(x1))))) 1(2(0(2(2(x1))))) (32)
0(1(2(0(2(x1))))) 1(2(2(0(2(x1))))) (33)
0(1(2(0(2(x1))))) 1(2(2(2(0(x1))))) (34)
1(0(1(0(2(x1))))) 0(1(2(2(2(x1))))) (35)
1(0(1(0(2(x1))))) 0(2(1(2(2(x1))))) (36)
1(0(1(0(2(x1))))) 1(0(0(2(2(x1))))) (37)
1(0(1(0(2(x1))))) 1(0(1(2(2(x1))))) (38)
1(0(1(0(2(x1))))) 1(0(2(0(2(x1))))) (39)
1(0(1(0(2(x1))))) 1(0(2(1(2(x1))))) (40)
1(0(1(0(2(x1))))) 1(0(2(2(0(x1))))) (41)
1(0(1(0(2(x1))))) 1(0(2(2(2(x1))))) (42)
1(0(1(0(2(x1))))) 1(1(0(2(2(x1))))) (43)
1(0(1(0(2(x1))))) 1(2(0(2(2(x1))))) (44)
1(0(1(0(2(x1))))) 1(2(1(0(2(x1))))) (45)
1(0(1(0(2(x1))))) 1(2(2(0(2(x1))))) (46)
1(0(1(0(2(x1))))) 1(2(2(2(0(x1))))) (47)
1(0(1(0(2(x1))))) 2(0(1(2(2(x1))))) (48)
1(0(1(0(2(x1))))) 2(0(2(1(2(x1))))) (49)
1(0(1(0(2(x1))))) 2(1(0(2(2(x1))))) (50)
1(0(1(0(2(x1))))) 2(1(2(0(2(x1))))) (51)
1(0(1(0(2(x1))))) 2(1(2(2(0(x1))))) (52)
1(0(1(0(2(x1))))) 2(2(0(1(2(x1))))) (53)
1(0(1(0(2(x1))))) 2(2(1(0(2(x1))))) (54)
1(0(1(0(2(x1))))) 2(2(1(2(0(x1))))) (55)
1(0(1(0(2(x1))))) 2(2(2(1(0(x1))))) (56)
1(0(2(0(2(x1))))) 1(0(2(2(2(x1))))) (57)
1(0(2(0(2(x1))))) 1(2(0(2(2(x1))))) (58)
1(0(2(0(2(x1))))) 1(2(2(0(2(x1))))) (59)
1(0(2(0(2(x1))))) 1(2(2(2(0(x1))))) (60)
1(0(2(0(2(x1))))) 2(1(0(2(2(x1))))) (61)
1(0(2(0(2(x1))))) 2(2(1(0(2(x1))))) (62)
1(1(2(0(2(x1))))) 0(1(2(2(2(x1))))) (63)
1(1(2(0(2(x1))))) 0(2(1(2(2(x1))))) (64)
1(1(2(0(2(x1))))) 0(2(2(1(2(x1))))) (65)
1(1(2(0(2(x1))))) 1(0(2(2(2(x1))))) (71)
1(1(2(0(2(x1))))) 1(2(0(2(2(x1))))) (73)
1(1(2(0(2(x1))))) 1(2(2(0(2(x1))))) (75)
1(1(2(0(2(x1))))) 1(2(2(2(0(x1))))) (76)
1(1(2(0(2(x1))))) 2(0(1(2(2(x1))))) (77)
1(1(2(0(2(x1))))) 2(1(0(2(2(x1))))) (78)
1(1(2(0(2(x1))))) 2(1(2(0(2(x1))))) (79)
1(1(2(0(2(x1))))) 2(2(0(1(2(x1))))) (80)
1(1(2(0(2(x1))))) 2(2(1(0(2(x1))))) (81)
1(1(2(0(2(x1))))) 2(2(2(1(0(x1))))) (82)
2(0(1(0(2(x1))))) 2(0(1(2(2(x1))))) (84)
2(0(1(0(2(x1))))) 2(0(2(1(2(x1))))) (85)
2(0(1(0(2(x1))))) 2(1(0(2(2(x1))))) (86)
2(0(1(0(2(x1))))) 2(1(2(0(2(x1))))) (87)
2(0(1(0(2(x1))))) 2(1(2(2(0(x1))))) (88)
2(0(1(0(2(x1))))) 2(2(0(1(2(x1))))) (89)
2(0(1(0(2(x1))))) 2(2(1(0(2(x1))))) (90)
2(0(1(0(2(x1))))) 2(2(1(2(0(x1))))) (91)
2(0(1(0(2(x1))))) 2(2(2(1(0(x1))))) (92)
2(1(1(0(2(x1))))) 2(0(2(1(2(x1))))) (94)
2(1(1(0(2(x1))))) 2(1(2(0(2(x1))))) (95)
2(1(1(0(2(x1))))) 2(2(1(0(2(x1))))) (96)

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
0#(1(2(0(2(x1))))) 2#(2(x1)) (101)
0#(1(2(0(2(x1))))) 0#(2(2(x1))) (102)
0#(1(2(0(2(x1))))) 1#(0(2(2(x1)))) (103)
0#(1(2(0(2(x1))))) 0#(1(0(2(2(x1))))) (104)
0#(1(2(0(2(x1))))) 1#(2(2(x1))) (105)
0#(1(2(0(2(x1))))) 1#(1(2(2(x1)))) (106)
0#(1(2(0(2(x1))))) 0#(1(1(2(2(x1))))) (107)
0#(1(2(0(2(x1))))) 1#(0(2(x1))) (108)
0#(1(2(0(2(x1))))) 2#(1(0(2(x1)))) (109)
0#(1(2(0(2(x1))))) 0#(2(1(0(2(x1))))) (110)
0#(1(2(0(2(x1))))) 0#(x1) (111)
0#(1(2(0(2(x1))))) 1#(0(x1)) (112)
0#(1(2(0(2(x1))))) 2#(1(0(x1))) (113)
0#(1(2(0(2(x1))))) 2#(2(1(0(x1)))) (114)
0#(1(2(0(2(x1))))) 0#(2(2(1(0(x1))))) (115)
1#(1(2(0(2(x1))))) 2#(2(x1)) (116)
1#(1(2(0(2(x1))))) 0#(2(2(x1))) (117)
1#(1(2(0(2(x1))))) 0#(0(2(2(x1)))) (118)
1#(1(2(0(2(x1))))) 1#(0(0(2(2(x1))))) (119)
1#(1(2(0(2(x1))))) 1#(2(2(x1))) (120)
1#(1(2(0(2(x1))))) 0#(1(2(2(x1)))) (121)
1#(1(2(0(2(x1))))) 1#(0(1(2(2(x1))))) (122)
1#(1(2(0(2(x1))))) 0#(2(0(2(x1)))) (123)
1#(1(2(0(2(x1))))) 1#(0(2(0(2(x1))))) (124)
1#(1(2(0(2(x1))))) 1#(2(x1)) (125)
1#(1(2(0(2(x1))))) 2#(1(2(x1))) (126)
1#(1(2(0(2(x1))))) 0#(2(1(2(x1)))) (127)
1#(1(2(0(2(x1))))) 1#(0(2(1(2(x1))))) (128)
1#(1(2(0(2(x1))))) 0#(x1) (129)
1#(1(2(0(2(x1))))) 2#(0(x1)) (130)
1#(1(2(0(2(x1))))) 2#(2(0(x1))) (131)
1#(1(2(0(2(x1))))) 0#(2(2(0(x1)))) (132)
1#(1(2(0(2(x1))))) 1#(0(2(2(0(x1))))) (133)
1#(1(2(0(2(x1))))) 1#(0(2(2(x1)))) (134)
1#(1(2(0(2(x1))))) 1#(1(0(2(2(x1))))) (135)
1#(1(2(0(2(x1))))) 1#(0(2(x1))) (136)
1#(1(2(0(2(x1))))) 2#(1(0(2(x1)))) (137)
1#(1(2(0(2(x1))))) 1#(2(1(0(2(x1))))) (138)
1#(2(2(0(2(x1))))) 2#(2(x1)) (139)
1#(2(2(0(2(x1))))) 2#(2(2(x1))) (140)
1#(2(2(0(2(x1))))) 0#(2(2(2(x1)))) (141)
1#(2(2(0(2(x1))))) 1#(0(2(2(2(x1))))) (142)
2#(1(1(0(2(x1))))) 0#(1(0(2(x1)))) (143)
2#(1(1(0(2(x1))))) 2#(0(1(0(2(x1))))) (144)
2#(1(2(0(2(x1))))) 2#(2(x1)) (145)
2#(1(2(0(2(x1))))) 1#(2(2(x1))) (146)
2#(1(2(0(2(x1))))) 0#(1(2(2(x1)))) (147)
2#(1(2(0(2(x1))))) 2#(0(1(2(2(x1))))) (148)
2#(1(2(0(2(x1))))) 0#(2(2(x1))) (149)
2#(1(2(0(2(x1))))) 1#(0(2(2(x1)))) (150)
2#(1(2(0(2(x1))))) 2#(1(0(2(2(x1))))) (151)
2#(1(2(0(2(x1))))) 1#(0(2(x1))) (152)
2#(1(2(0(2(x1))))) 2#(1(0(2(x1)))) (153)
2#(1(2(0(2(x1))))) 2#(2(1(0(2(x1))))) (154)
2#(1(2(0(2(x1))))) 0#(x1) (155)
2#(1(2(0(2(x1))))) 1#(0(x1)) (156)
2#(1(2(0(2(x1))))) 2#(1(0(x1))) (157)
2#(1(2(0(2(x1))))) 2#(2(1(0(x1)))) (158)
2#(1(2(0(2(x1))))) 2#(2(2(1(0(x1))))) (159)

1.1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.