The rewrite relation of the following TRS is considered.
a(b(c(a(x1)))) | → | b(a(c(b(a(b(x1)))))) | (1) |
a(d(x1)) | → | c(x1) | (2) |
a(f(f(x1))) | → | g(x1) | (3) |
b(g(x1)) | → | g(b(x1)) | (4) |
c(x1) | → | f(f(x1)) | (5) |
c(a(c(x1))) | → | b(c(a(b(c(x1))))) | (6) |
c(d(x1)) | → | a(a(x1)) | (7) |
g(x1) | → | c(a(x1)) | (8) |
g(x1) | → | d(d(d(d(x1)))) | (9) |
a(c(b(a(x1)))) | → | b(a(b(c(a(b(x1)))))) | (10) |
d(a(x1)) | → | c(x1) | (11) |
f(f(a(x1))) | → | g(x1) | (12) |
g(b(x1)) | → | b(g(x1)) | (13) |
c(x1) | → | f(f(x1)) | (5) |
c(a(c(x1))) | → | c(b(a(c(b(x1))))) | (14) |
d(c(x1)) | → | a(a(x1)) | (15) |
g(x1) | → | a(c(x1)) | (16) |
g(x1) | → | d(d(d(d(x1)))) | (9) |
[f(x1)] | = | 3 · x1 + -∞ |
[c(x1)] | = | 6 · x1 + -∞ |
[d(x1)] | = | 2 · x1 + -∞ |
[g(x1)] | = | 10 · x1 + -∞ |
[a(x1)] | = | 4 · x1 + -∞ |
[b(x1)] | = | 0 · x1 + -∞ |
g(x1) | → | d(d(d(d(x1)))) | (9) |
[f(x1)] | = | 0 · x1 + -∞ |
[c(x1)] | = | 0 · x1 + -∞ |
[d(x1)] | = | 8 · x1 + -∞ |
[g(x1)] | = | 0 · x1 + -∞ |
[a(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 0 · x1 + -∞ |
d(a(x1)) | → | c(x1) | (11) |
d(c(x1)) | → | a(a(x1)) | (15) |
[f(x1)] | = |
|
||||||||||||||||||||||||
[c(x1)] | = |
|
||||||||||||||||||||||||
[g(x1)] | = |
|
||||||||||||||||||||||||
[a(x1)] | = |
|
||||||||||||||||||||||||
[b(x1)] | = |
|
f(f(a(x1))) | → | g(x1) | (12) |
[f(x1)] | = | 0 · x1 + -∞ |
[c(x1)] | = | 0 · x1 + -∞ |
[g(x1)] | = | 15 · x1 + -∞ |
[a(x1)] | = | 8 · x1 + -∞ |
[b(x1)] | = | 0 · x1 + -∞ |
g(x1) | → | a(c(x1)) | (16) |
a#(c(b(a(x1)))) | → | a#(b(x1)) | (17) |
a#(c(b(a(x1)))) | → | c#(a(b(x1))) | (18) |
a#(c(b(a(x1)))) | → | a#(b(c(a(b(x1))))) | (19) |
g#(b(x1)) | → | g#(x1) | (20) |
c#(a(c(x1))) | → | c#(b(x1)) | (21) |
c#(a(c(x1))) | → | a#(c(b(x1))) | (22) |
c#(a(c(x1))) | → | c#(b(a(c(b(x1))))) | (23) |
The dependency pairs are split into 1 component.
g#(b(x1)) | → | g#(x1) | (20) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
g#(b(x1)) | → | g#(x1) | (20) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.