The rewrite relation of the following TRS is considered.
thrice(0(x1)) | → | p(s(p(p(p(s(s(s(0(p(s(p(s(x1))))))))))))) | (1) |
thrice(s(x1)) | → | p(p(s(s(half(p(p(s(s(p(s(sixtimes(p(s(p(p(s(s(x1)))))))))))))))))) | (2) |
half(0(x1)) | → | p(p(s(s(p(s(0(p(s(s(s(s(x1)))))))))))) | (3) |
half(s(x1)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x1))))))))))))))))) | (4) |
half(s(s(x1))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x1)))))))))))))))) | (5) |
sixtimes(0(x1)) | → | p(s(p(s(0(s(s(s(s(s(p(s(p(s(x1)))))))))))))) | (6) |
sixtimes(s(x1)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x1))))))))))))))))))))))))) | (7) |
p(p(s(x1))) | → | p(x1) | (8) |
p(s(x1)) | → | x1 | (9) |
p(0(x1)) | → | 0(s(s(s(s(x1))))) | (10) |
0(x1) | → | x1 | (11) |
[sixtimes(x1)] | = | 8 · x1 + -∞ |
[thrice(x1)] | = | 15 · x1 + -∞ |
[p(x1)] | = | 0 · x1 + -∞ |
[half(x1)] | = | 4 · x1 + -∞ |
[0(x1)] | = | 8 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
thrice(0(x1)) | → | p(s(p(p(p(s(s(s(0(p(s(p(s(x1))))))))))))) | (1) |
thrice(s(x1)) | → | p(p(s(s(half(p(p(s(s(p(s(sixtimes(p(s(p(p(s(s(x1)))))))))))))))))) | (2) |
half(0(x1)) | → | p(p(s(s(p(s(0(p(s(s(s(s(x1)))))))))))) | (3) |
sixtimes(0(x1)) | → | p(s(p(s(0(s(s(s(s(s(p(s(p(s(x1)))))))))))))) | (6) |
0(x1) | → | x1 | (11) |
half#(s(x1)) | → | p#(s(x1)) | (12) |
half#(s(x1)) | → | p#(s(s(p(s(x1))))) | (13) |
half#(s(x1)) | → | p#(p(s(s(p(s(x1)))))) | (14) |
half#(s(x1)) | → | half#(p(p(s(s(p(s(x1))))))) | (15) |
half#(s(x1)) | → | p#(s(s(half(p(p(s(s(p(s(x1)))))))))) | (16) |
half#(s(x1)) | → | p#(p(s(s(half(p(p(s(s(p(s(x1))))))))))) | (17) |
half#(s(x1)) | → | p#(s(s(p(p(s(s(half(p(p(s(s(p(s(x1)))))))))))))) | (18) |
half#(s(x1)) | → | p#(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x1))))))))))))))) | (19) |
half#(s(x1)) | → | p#(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x1))))))))))))))))) | (20) |
half#(s(s(x1))) | → | p#(s(x1)) | (21) |
half#(s(s(x1))) | → | p#(s(s(p(s(x1))))) | (22) |
half#(s(s(x1))) | → | p#(p(s(s(p(s(x1)))))) | (23) |
half#(s(s(x1))) | → | half#(p(p(s(s(p(s(x1))))))) | (24) |
half#(s(s(x1))) | → | p#(s(s(half(p(p(s(s(p(s(x1)))))))))) | (25) |
half#(s(s(x1))) | → | p#(p(s(s(half(p(p(s(s(p(s(x1))))))))))) | (26) |
half#(s(s(x1))) | → | p#(s(s(p(p(s(s(half(p(p(s(s(p(s(x1)))))))))))))) | (27) |
half#(s(s(x1))) | → | p#(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x1)))))))))))))))) | (28) |
sixtimes#(s(x1)) | → | p#(s(s(s(x1)))) | (29) |
sixtimes#(s(x1)) | → | p#(p(s(s(s(x1))))) | (30) |
sixtimes#(s(x1)) | → | p#(p(p(s(s(s(x1)))))) | (31) |
sixtimes#(s(x1)) | → | p#(s(p(p(p(s(s(s(x1)))))))) | (32) |
sixtimes#(s(x1)) | → | sixtimes#(p(s(p(p(p(s(s(s(x1))))))))) | (33) |
sixtimes#(s(x1)) | → | p#(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x1))))))))))))) | (34) |
sixtimes#(s(x1)) | → | p#(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x1))))))))))))))) | (35) |
sixtimes#(s(x1)) | → | p#(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x1)))))))))))))))) | (36) |
sixtimes#(s(x1)) | → | p#(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x1)))))))))))))))))))))))) | (37) |
sixtimes#(s(x1)) | → | p#(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x1))))))))))))))))))))))))) | (38) |
p#(p(s(x1))) | → | p#(x1) | (39) |
The dependency pairs are split into 3 components.
half#(s(s(x1))) | → | half#(p(p(s(s(p(s(x1))))))) | (24) |
half#(s(x1)) | → | half#(p(p(s(s(p(s(x1))))))) | (15) |
[p(x1)] | = | -1 · x1 + 0 |
[0(x1)] | = | -∞ · x1 + 0 |
[half#(x1)] | = | 0 · x1 + 0 |
[s(x1)] | = | 1 · x1 + 1 |
p(s(x1)) | → | x1 | (9) |
p(p(s(x1))) | → | p(x1) | (8) |
p(0(x1)) | → | 0(s(s(s(s(x1))))) | (10) |
half#(s(s(x1))) | → | half#(p(p(s(s(p(s(x1))))))) | (24) |
half#(s(x1)) | → | half#(p(p(s(s(p(s(x1))))))) | (15) |
There are no pairs anymore.
sixtimes#(s(x1)) | → | sixtimes#(p(s(p(p(p(s(s(s(x1))))))))) | (33) |
[sixtimes#(x1)] | = | 0 · x1 + 0 |
[p(x1)] | = | -1 · x1 + 0 |
[0(x1)] | = | -∞ · x1 + 0 |
[s(x1)] | = | 1 · x1 + 1 |
p(s(x1)) | → | x1 | (9) |
p(p(s(x1))) | → | p(x1) | (8) |
p(0(x1)) | → | 0(s(s(s(s(x1))))) | (10) |
sixtimes#(s(x1)) | → | sixtimes#(p(s(p(p(p(s(s(s(x1))))))))) | (33) |
There are no pairs anymore.
p#(p(s(x1))) | → | p#(x1) | (39) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
p#(p(s(x1))) | → | p#(x1) | (39) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.