The rewrite relation of the following TRS is considered.
sq(0(x1)) | → | p(s(p(s(p(p(p(p(s(s(s(s(0(p(s(p(s(x1))))))))))))))))) | (1) |
sq(s(x1)) | → | s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x1))))))))))))))))))))))))))))))))) | (2) |
twice(0(x1)) | → | p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x1))))))))))))))))))))))))))) | (3) |
twice(s(x1)) | → | p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x1))))))))))))))) | (4) |
p(p(s(x1))) | → | p(x1) | (5) |
p(s(x1)) | → | x1 | (6) |
p(0(x1)) | → | 0(s(s(s(s(s(s(s(s(s(s(s(x1)))))))))))) | (7) |
0(x1) | → | x1 | (8) |
0(sq(x1)) | → | s(p(s(p(0(s(s(s(s(p(p(p(p(s(p(s(p(x1))))))))))))))))) | (9) |
s(sq(x1)) | → | s(s(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))))) | (10) |
0(twice(x1)) | → | s(p(s(p(s(p(s(s(p(p(s(s(s(p(p(p(0(s(s(s(p(s(s(p(p(p(p(x1))))))))))))))))))))))))))) | (11) |
s(twice(x1)) | → | s(p(s(p(twice(s(s(s(p(p(s(s(s(p(p(x1))))))))))))))) | (12) |
s(p(p(x1))) | → | p(x1) | (13) |
s(p(x1)) | → | x1 | (14) |
0(p(x1)) | → | s(s(s(s(s(s(s(s(s(s(s(0(x1)))))))))))) | (15) |
0(x1) | → | x1 | (8) |
[twice(x1)] | = | 0 · x1 + -∞ |
[sq(x1)] | = | 0 · x1 + -∞ |
[p(x1)] | = | 0 · x1 + -∞ |
[0(x1)] | = | 3 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
0(x1) | → | x1 | (8) |
0#(sq(x1)) | → | s#(p(x1)) | (16) |
0#(sq(x1)) | → | s#(p(s(p(x1)))) | (17) |
0#(sq(x1)) | → | s#(p(p(p(p(s(p(s(p(x1))))))))) | (18) |
0#(sq(x1)) | → | s#(s(p(p(p(p(s(p(s(p(x1)))))))))) | (19) |
0#(sq(x1)) | → | s#(s(s(p(p(p(p(s(p(s(p(x1))))))))))) | (20) |
0#(sq(x1)) | → | s#(s(s(s(p(p(p(p(s(p(s(p(x1)))))))))))) | (21) |
0#(sq(x1)) | → | 0#(s(s(s(s(p(p(p(p(s(p(s(p(x1))))))))))))) | (22) |
0#(sq(x1)) | → | s#(p(0(s(s(s(s(p(p(p(p(s(p(s(p(x1))))))))))))))) | (23) |
0#(sq(x1)) | → | s#(p(s(p(0(s(s(s(s(p(p(p(p(s(p(s(p(x1))))))))))))))))) | (24) |
s#(sq(x1)) | → | s#(x1) | (25) |
s#(sq(x1)) | → | s#(p(s(x1))) | (26) |
s#(sq(x1)) | → | s#(p(s(p(s(x1))))) | (27) |
s#(sq(x1)) | → | s#(p(p(s(p(s(p(s(x1)))))))) | (28) |
s#(sq(x1)) | → | s#(s(p(p(s(p(s(p(s(x1))))))))) | (29) |
s#(sq(x1)) | → | s#(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))) | (30) |
s#(sq(x1)) | → | s#(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))) | (31) |
s#(sq(x1)) | → | s#(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))) | (32) |
s#(sq(x1)) | → | s#(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))) | (33) |
s#(sq(x1)) | → | s#(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))))) | (34) |
s#(sq(x1)) | → | s#(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))))))))))))) | (35) |
s#(sq(x1)) | → | s#(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))) | (36) |
s#(sq(x1)) | → | s#(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))))))))))))))) | (37) |
s#(sq(x1)) | → | s#(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))) | (38) |
s#(sq(x1)) | → | s#(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))))))))))))))))) | (39) |
s#(sq(x1)) | → | s#(s(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))))) | (40) |
0#(twice(x1)) | → | s#(p(p(p(p(x1))))) | (41) |
0#(twice(x1)) | → | s#(s(p(p(p(p(x1)))))) | (42) |
0#(twice(x1)) | → | s#(p(s(s(p(p(p(p(x1)))))))) | (43) |
0#(twice(x1)) | → | s#(s(p(s(s(p(p(p(p(x1))))))))) | (44) |
0#(twice(x1)) | → | s#(s(s(p(s(s(p(p(p(p(x1)))))))))) | (45) |
0#(twice(x1)) | → | 0#(s(s(s(p(s(s(p(p(p(p(x1))))))))))) | (46) |
0#(twice(x1)) | → | s#(p(p(p(0(s(s(s(p(s(s(p(p(p(p(x1))))))))))))))) | (47) |
0#(twice(x1)) | → | s#(s(p(p(p(0(s(s(s(p(s(s(p(p(p(p(x1)))))))))))))))) | (48) |
0#(twice(x1)) | → | s#(s(s(p(p(p(0(s(s(s(p(s(s(p(p(p(p(x1))))))))))))))))) | (49) |
0#(twice(x1)) | → | s#(p(p(s(s(s(p(p(p(0(s(s(s(p(s(s(p(p(p(p(x1)))))))))))))))))))) | (50) |
0#(twice(x1)) | → | s#(s(p(p(s(s(s(p(p(p(0(s(s(s(p(s(s(p(p(p(p(x1))))))))))))))))))))) | (51) |
0#(twice(x1)) | → | s#(p(s(s(p(p(s(s(s(p(p(p(0(s(s(s(p(s(s(p(p(p(p(x1))))))))))))))))))))))) | (52) |
0#(twice(x1)) | → | s#(p(s(p(s(s(p(p(s(s(s(p(p(p(0(s(s(s(p(s(s(p(p(p(p(x1))))))))))))))))))))))))) | (53) |
0#(twice(x1)) | → | s#(p(s(p(s(p(s(s(p(p(s(s(s(p(p(p(0(s(s(s(p(s(s(p(p(p(p(x1))))))))))))))))))))))))))) | (54) |
s#(twice(x1)) | → | s#(p(p(x1))) | (55) |
s#(twice(x1)) | → | s#(s(p(p(x1)))) | (56) |
s#(twice(x1)) | → | s#(s(s(p(p(x1))))) | (57) |
s#(twice(x1)) | → | s#(p(p(s(s(s(p(p(x1)))))))) | (58) |
s#(twice(x1)) | → | s#(s(p(p(s(s(s(p(p(x1))))))))) | (59) |
s#(twice(x1)) | → | s#(s(s(p(p(s(s(s(p(p(x1)))))))))) | (60) |
s#(twice(x1)) | → | s#(p(twice(s(s(s(p(p(s(s(s(p(p(x1))))))))))))) | (61) |
s#(twice(x1)) | → | s#(p(s(p(twice(s(s(s(p(p(s(s(s(p(p(x1))))))))))))))) | (62) |
0#(p(x1)) | → | 0#(x1) | (63) |
0#(p(x1)) | → | s#(0(x1)) | (64) |
0#(p(x1)) | → | s#(s(0(x1))) | (65) |
0#(p(x1)) | → | s#(s(s(0(x1)))) | (66) |
0#(p(x1)) | → | s#(s(s(s(0(x1))))) | (67) |
0#(p(x1)) | → | s#(s(s(s(s(0(x1)))))) | (68) |
0#(p(x1)) | → | s#(s(s(s(s(s(0(x1))))))) | (69) |
0#(p(x1)) | → | s#(s(s(s(s(s(s(0(x1)))))))) | (70) |
0#(p(x1)) | → | s#(s(s(s(s(s(s(s(0(x1))))))))) | (71) |
0#(p(x1)) | → | s#(s(s(s(s(s(s(s(s(0(x1)))))))))) | (72) |
0#(p(x1)) | → | s#(s(s(s(s(s(s(s(s(s(0(x1))))))))))) | (73) |
0#(p(x1)) | → | s#(s(s(s(s(s(s(s(s(s(s(0(x1)))))))))))) | (74) |
The dependency pairs are split into 2 components.
0#(twice(x1)) | → | 0#(s(s(s(p(s(s(p(p(p(p(x1))))))))))) | (46) |
0#(p(x1)) | → | 0#(x1) | (63) |
0#(sq(x1)) | → | 0#(s(s(s(s(p(p(p(p(s(p(s(p(x1))))))))))))) | (22) |
prec(0#) | = | 0 | stat(0#) | = | lex | |
prec(twice) | = | 0 | stat(twice) | = | lex | |
prec(p) | = | 0 | stat(p) | = | lex | |
prec(s) | = | 0 | stat(s) | = | lex | |
prec(sq) | = | 0 | stat(sq) | = | lex |
π(0#) | = | 1 |
π(twice) | = | 1 |
π(p) | = | 1 |
π(s) | = | 1 |
π(sq) | = | [1] |
s(p(p(x1))) | → | p(x1) | (13) |
s(p(x1)) | → | x1 | (14) |
s(sq(x1)) | → | s(s(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))))) | (10) |
s(twice(x1)) | → | s(p(s(p(twice(s(s(s(p(p(s(s(s(p(p(x1))))))))))))))) | (12) |
0#(sq(x1)) | → | 0#(s(s(s(s(p(p(p(p(s(p(s(p(x1))))))))))))) | (22) |
prec(0#) | = | 0 | stat(0#) | = | lex | |
prec(twice) | = | 0 | stat(twice) | = | lex | |
prec(p) | = | 0 | stat(p) | = | lex | |
prec(s) | = | 0 | stat(s) | = | lex | |
prec(sq) | = | 0 | stat(sq) | = | lex |
π(0#) | = | 1 |
π(twice) | = | [1] |
π(p) | = | 1 |
π(s) | = | 1 |
π(sq) | = | [] |
s(p(p(x1))) | → | p(x1) | (13) |
s(p(x1)) | → | x1 | (14) |
s(sq(x1)) | → | s(s(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))))) | (10) |
s(twice(x1)) | → | s(p(s(p(twice(s(s(s(p(p(s(s(s(p(p(x1))))))))))))))) | (12) |
0#(twice(x1)) | → | 0#(s(s(s(p(s(s(p(p(p(p(x1))))))))))) | (46) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
0#(p(x1)) | → | 0#(x1) | (63) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
s#(twice(x1)) | → | s#(s(p(p(s(s(s(p(p(x1))))))))) | (59) |
s#(twice(x1)) | → | s#(s(s(p(p(s(s(s(p(p(x1)))))))))) | (60) |
s#(twice(x1)) | → | s#(s(s(p(p(x1))))) | (57) |
s#(twice(x1)) | → | s#(s(p(p(x1)))) | (56) |
s#(sq(x1)) | → | s#(s(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))))) | (40) |
s#(sq(x1)) | → | s#(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))))))))))))))))) | (39) |
s#(sq(x1)) | → | s#(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))) | (38) |
s#(sq(x1)) | → | s#(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))))))))))))))) | (37) |
s#(sq(x1)) | → | s#(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))) | (36) |
s#(sq(x1)) | → | s#(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))))) | (34) |
s#(sq(x1)) | → | s#(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))) | (33) |
s#(sq(x1)) | → | s#(s(p(p(s(p(s(p(s(x1))))))))) | (29) |
s#(sq(x1)) | → | s#(x1) | (25) |
prec(s#) | = | 0 | stat(s#) | = | lex | |
prec(twice) | = | 0 | stat(twice) | = | lex | |
prec(p) | = | 0 | stat(p) | = | lex | |
prec(s) | = | 0 | stat(s) | = | lex | |
prec(sq) | = | 0 | stat(sq) | = | lex |
π(s#) | = | 1 |
π(twice) | = | 1 |
π(p) | = | 1 |
π(s) | = | 1 |
π(sq) | = | [1] |
s(p(p(x1))) | → | p(x1) | (13) |
s(p(x1)) | → | x1 | (14) |
s(sq(x1)) | → | s(s(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))))) | (10) |
s(twice(x1)) | → | s(p(s(p(twice(s(s(s(p(p(s(s(s(p(p(x1))))))))))))))) | (12) |
s#(sq(x1)) | → | s#(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))))) | (34) |
s#(sq(x1)) | → | s#(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))) | (33) |
s#(sq(x1)) | → | s#(s(p(p(s(p(s(p(s(x1))))))))) | (29) |
s#(sq(x1)) | → | s#(x1) | (25) |
prec(s#) | = | 0 | stat(s#) | = | lex | |
prec(twice) | = | 0 | stat(twice) | = | lex | |
prec(p) | = | 0 | stat(p) | = | lex | |
prec(s) | = | 0 | stat(s) | = | lex | |
prec(sq) | = | 0 | stat(sq) | = | lex |
π(s#) | = | 1 |
π(twice) | = | [1] |
π(p) | = | 1 |
π(s) | = | 1 |
π(sq) | = | [] |
s(p(p(x1))) | → | p(x1) | (13) |
s(p(x1)) | → | x1 | (14) |
s(sq(x1)) | → | s(s(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))))) | (10) |
s(twice(x1)) | → | s(p(s(p(twice(s(s(s(p(p(s(s(s(p(p(x1))))))))))))))) | (12) |
s#(twice(x1)) | → | s#(s(p(p(s(s(s(p(p(x1))))))))) | (59) |
s#(twice(x1)) | → | s#(s(s(p(p(s(s(s(p(p(x1)))))))))) | (60) |
s#(twice(x1)) | → | s#(s(s(p(p(x1))))) | (57) |
s#(twice(x1)) | → | s#(s(p(p(x1)))) | (56) |
[twice(x1)] | = | -∞ · x1 + 6 |
[sq(x1)] | = | 0 · x1 + 5 |
[p(x1)] | = | -1 · x1 + 0 |
[s#(x1)] | = | 0 · x1 + 0 |
[s(x1)] | = | 1 · x1 + 0 |
s(sq(x1)) | → | s(s(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))))) | (10) |
s(twice(x1)) | → | s(p(s(p(twice(s(s(s(p(p(s(s(s(p(p(x1))))))))))))))) | (12) |
s(p(p(x1))) | → | p(x1) | (13) |
s(p(x1)) | → | x1 | (14) |
s#(sq(x1)) | → | s#(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))))))))))))))))) | (39) |
s#(sq(x1)) | → | s#(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))) | (38) |
s#(sq(x1)) | → | s#(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1)))))))))))))))))))))))))))))) | (37) |
s#(sq(x1)) | → | s#(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))) | (36) |
[twice(x1)] | = | -∞ · x1 + 0 |
[sq(x1)] | = | -∞ · x1 + 6 |
[p(x1)] | = | -1 · x1 + 0 |
[s#(x1)] | = | 0 · x1 + 0 |
[s(x1)] | = | 1 · x1 + 0 |
s(sq(x1)) | → | s(s(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))))) | (10) |
s(twice(x1)) | → | s(p(s(p(twice(s(s(s(p(p(s(s(s(p(p(x1))))))))))))))) | (12) |
s(p(p(x1))) | → | p(x1) | (13) |
s(p(x1)) | → | x1 | (14) |
s#(sq(x1)) | → | s#(s(s(s(s(s(p(p(p(p(p(p(sq(s(s(s(p(p(p(s(p(s(p(twice(s(s(p(p(s(p(s(p(s(x1))))))))))))))))))))))))))))))))) | (40) |
There are no pairs anymore.