The rewrite relation of the following TRS is considered.
r(r(x1)) | → | s(r(x1)) | (1) |
r(s(x1)) | → | s(r(x1)) | (2) |
r(n(x1)) | → | s(r(x1)) | (3) |
r(b(x1)) | → | u(s(b(x1))) | (4) |
r(u(x1)) | → | u(r(x1)) | (5) |
s(u(x1)) | → | u(s(x1)) | (6) |
n(u(x1)) | → | u(n(x1)) | (7) |
t(r(u(x1))) | → | t(c(r(x1))) | (8) |
t(s(u(x1))) | → | t(c(r(x1))) | (9) |
t(n(u(x1))) | → | t(c(r(x1))) | (10) |
c(u(x1)) | → | u(c(x1)) | (11) |
c(s(x1)) | → | s(c(x1)) | (12) |
c(r(x1)) | → | r(c(x1)) | (13) |
c(n(x1)) | → | n(c(x1)) | (14) |
c(n(x1)) | → | n(x1) | (15) |
[u(x1)] | = | 0 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 8 · x1 + -∞ |
[t(x1)] | = | 0 · x1 + -∞ |
[r(x1)] | = | 0 · x1 + -∞ |
[c(x1)] | = | 0 · x1 + -∞ |
[n(x1)] | = | 15 · x1 + -∞ |
r(n(x1)) | → | s(r(x1)) | (3) |
t(n(u(x1))) | → | t(c(r(x1))) | (10) |
[u(x1)] | = | 1 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 0 · x1 + -∞ |
[t(x1)] | = | 0 · x1 + -∞ |
[r(x1)] | = | 1 · x1 + -∞ |
[c(x1)] | = | 0 · x1 + -∞ |
[n(x1)] | = | 0 · x1 + -∞ |
r(r(x1)) | → | s(r(x1)) | (1) |
t(r(u(x1))) | → | t(c(r(x1))) | (8) |
[u(x1)] | = |
|
||||||||||||||||||||||||
[s(x1)] | = |
|
||||||||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||||||||
[t(x1)] | = |
|
||||||||||||||||||||||||
[r(x1)] | = |
|
||||||||||||||||||||||||
[c(x1)] | = |
|
||||||||||||||||||||||||
[n(x1)] | = |
|
r(b(x1)) | → | u(s(b(x1))) | (4) |
prec(c) | = | 7 | weight(c) | = | 4 | ||||
prec(t) | = | 6 | weight(t) | = | 2 | ||||
prec(u) | = | 0 | weight(u) | = | 5 | ||||
prec(n) | = | 4 | weight(n) | = | 2 | ||||
prec(s) | = | 2 | weight(s) | = | 5 | ||||
prec(r) | = | 3 | weight(r) | = | 1 |
r(s(x1)) | → | s(r(x1)) | (2) |
r(u(x1)) | → | u(r(x1)) | (5) |
s(u(x1)) | → | u(s(x1)) | (6) |
n(u(x1)) | → | u(n(x1)) | (7) |
t(s(u(x1))) | → | t(c(r(x1))) | (9) |
c(u(x1)) | → | u(c(x1)) | (11) |
c(s(x1)) | → | s(c(x1)) | (12) |
c(r(x1)) | → | r(c(x1)) | (13) |
c(n(x1)) | → | n(c(x1)) | (14) |
c(n(x1)) | → | n(x1) | (15) |
There are no rules in the TRS. Hence, it is terminating.