The rewrite relation of the following TRS is considered.
| r0(0(x1)) | → | 0(r0(x1)) | (1) |
| r0(1(x1)) | → | 1(r0(x1)) | (2) |
| r0(m(x1)) | → | m(r0(x1)) | (3) |
| r1(0(x1)) | → | 0(r1(x1)) | (4) |
| r1(1(x1)) | → | 1(r1(x1)) | (5) |
| r1(m(x1)) | → | m(r1(x1)) | (6) |
| r0(b(x1)) | → | qr(0(b(x1))) | (7) |
| r1(b(x1)) | → | qr(1(b(x1))) | (8) |
| 0(qr(x1)) | → | qr(0(x1)) | (9) |
| 1(qr(x1)) | → | qr(1(x1)) | (10) |
| m(qr(x1)) | → | ql(m(x1)) | (11) |
| 0(ql(x1)) | → | ql(0(x1)) | (12) |
| 1(ql(x1)) | → | ql(1(x1)) | (13) |
| b(ql(0(x1))) | → | 0(b(r0(x1))) | (14) |
| b(ql(1(x1))) | → | 1(b(r1(x1))) | (15) |
| 0(r0(x1)) | → | r0(0(x1)) | (16) |
| 1(r0(x1)) | → | r0(1(x1)) | (17) |
| m(r0(x1)) | → | r0(m(x1)) | (18) |
| 0(r1(x1)) | → | r1(0(x1)) | (19) |
| 1(r1(x1)) | → | r1(1(x1)) | (20) |
| m(r1(x1)) | → | r1(m(x1)) | (21) |
| b(r0(x1)) | → | b(0(qr(x1))) | (22) |
| b(r1(x1)) | → | b(1(qr(x1))) | (23) |
| qr(0(x1)) | → | 0(qr(x1)) | (24) |
| qr(1(x1)) | → | 1(qr(x1)) | (25) |
| qr(m(x1)) | → | m(ql(x1)) | (26) |
| ql(0(x1)) | → | 0(ql(x1)) | (27) |
| ql(1(x1)) | → | 1(ql(x1)) | (28) |
| 0(ql(b(x1))) | → | r0(b(0(x1))) | (29) |
| 1(ql(b(x1))) | → | r1(b(1(x1))) | (30) |
| [r1(x1)] | = |
|
||||||||||||||||||||||||
| [r0(x1)] | = |
|
||||||||||||||||||||||||
| [m(x1)] | = |
|
||||||||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||||||||
| [0(x1)] | = |
|
||||||||||||||||||||||||
| [ql(x1)] | = |
|
||||||||||||||||||||||||
| [qr(x1)] | = |
|
||||||||||||||||||||||||
| [1(x1)] | = |
|
| m(r0(x1)) | → | r0(m(x1)) | (18) |
| m(r1(x1)) | → | r1(m(x1)) | (21) |
| [r1(x1)] | = |
|
||||||||||||||||||||||||
| [r0(x1)] | = |
|
||||||||||||||||||||||||
| [m(x1)] | = |
|
||||||||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||||||||
| [0(x1)] | = |
|
||||||||||||||||||||||||
| [ql(x1)] | = |
|
||||||||||||||||||||||||
| [qr(x1)] | = |
|
||||||||||||||||||||||||
| [1(x1)] | = |
|
| 0(ql(b(x1))) | → | r0(b(0(x1))) | (29) |
| 0#(r0(x1)) | → | 0#(x1) | (31) |
| 1#(r0(x1)) | → | 1#(x1) | (32) |
| 0#(r1(x1)) | → | 0#(x1) | (33) |
| 1#(r1(x1)) | → | 1#(x1) | (34) |
| b#(r0(x1)) | → | qr#(x1) | (35) |
| b#(r0(x1)) | → | 0#(qr(x1)) | (36) |
| b#(r0(x1)) | → | b#(0(qr(x1))) | (37) |
| b#(r1(x1)) | → | qr#(x1) | (38) |
| b#(r1(x1)) | → | 1#(qr(x1)) | (39) |
| b#(r1(x1)) | → | b#(1(qr(x1))) | (40) |
| qr#(0(x1)) | → | qr#(x1) | (41) |
| qr#(0(x1)) | → | 0#(qr(x1)) | (42) |
| qr#(1(x1)) | → | qr#(x1) | (43) |
| qr#(1(x1)) | → | 1#(qr(x1)) | (44) |
| qr#(m(x1)) | → | ql#(x1) | (45) |
| ql#(0(x1)) | → | ql#(x1) | (46) |
| ql#(0(x1)) | → | 0#(ql(x1)) | (47) |
| ql#(1(x1)) | → | ql#(x1) | (48) |
| ql#(1(x1)) | → | 1#(ql(x1)) | (49) |
| 1#(ql(b(x1))) | → | 1#(x1) | (50) |
| 1#(ql(b(x1))) | → | b#(1(x1)) | (51) |
The dependency pairs are split into 2 components.
| ql#(1(x1)) | → | ql#(x1) | (48) |
| ql#(1(x1)) | → | 1#(ql(x1)) | (49) |
| 1#(ql(b(x1))) | → | b#(1(x1)) | (51) |
| b#(r1(x1)) | → | b#(1(qr(x1))) | (40) |
| b#(r1(x1)) | → | 1#(qr(x1)) | (39) |
| 1#(r1(x1)) | → | 1#(x1) | (34) |
| 1#(ql(b(x1))) | → | 1#(x1) | (50) |
| 1#(r0(x1)) | → | 1#(x1) | (32) |
| b#(r1(x1)) | → | qr#(x1) | (38) |
| qr#(m(x1)) | → | ql#(x1) | (45) |
| ql#(0(x1)) | → | ql#(x1) | (46) |
| qr#(1(x1)) | → | 1#(qr(x1)) | (44) |
| qr#(1(x1)) | → | qr#(x1) | (43) |
| qr#(0(x1)) | → | qr#(x1) | (41) |
| b#(r0(x1)) | → | b#(0(qr(x1))) | (37) |
| b#(r0(x1)) | → | qr#(x1) | (35) |
| π(ql#) | = | { 1, 1 } |
| π(qr#) | = | { 1, 1 } |
| π(b#) | = | { 1, 1 } |
| π(1#) | = | { 1, 1 } |
| π(ql) | = | { 1 } |
| π(qr) | = | { 1 } |
| π(b) | = | { 1 } |
| π(r1) | = | { 1 } |
| π(m) | = | { 1 } |
| π(1) | = | { 1 } |
| π(r0) | = | { 1, 1, 1 } |
| π(0) | = | { 1, 1 } |
| 1#(r0(x1)) | → | 1#(x1) | (32) |
| ql#(0(x1)) | → | ql#(x1) | (46) |
| qr#(0(x1)) | → | qr#(x1) | (41) |
| b#(r0(x1)) | → | b#(0(qr(x1))) | (37) |
| b#(r0(x1)) | → | qr#(x1) | (35) |
| π(ql#) | = | { 1, 1 } |
| π(qr#) | = | { 1, 1 } |
| π(b#) | = | { 1, 1 } |
| π(1#) | = | { 1 } |
| π(ql) | = | { 1, 1 } |
| π(qr) | = | { 1, 1 } |
| π(b) | = | { 1 } |
| π(r1) | = | { 1, 1 } |
| π(m) | = | { 1 } |
| π(1) | = | { 1 } |
| π(r0) | = | { 1, 1 } |
| π(0) | = | { 1 } |
| b#(r1(x1)) | → | 1#(qr(x1)) | (39) |
| 1#(r1(x1)) | → | 1#(x1) | (34) |
| 1#(ql(b(x1))) | → | 1#(x1) | (50) |
| b#(r1(x1)) | → | qr#(x1) | (38) |
The dependency pairs are split into 3 components.
| qr#(1(x1)) | → | qr#(x1) | (43) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| qr#(1(x1)) | → | qr#(x1) | (43) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| ql#(1(x1)) | → | ql#(x1) | (48) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| ql#(1(x1)) | → | ql#(x1) | (48) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| b#(r1(x1)) | → | b#(1(qr(x1))) | (40) |
| prec(b#) | = | 0 | stat(b#) | = | lex | |
| prec(ql) | = | 1 | stat(ql) | = | lex | |
| prec(qr) | = | 0 | stat(qr) | = | lex | |
| prec(b) | = | 0 | stat(b) | = | lex | |
| prec(r1) | = | 0 | stat(r1) | = | lex | |
| prec(m) | = | 0 | stat(m) | = | lex | |
| prec(1) | = | 0 | stat(1) | = | lex | |
| prec(r0) | = | 0 | stat(r0) | = | lex | |
| prec(0) | = | 0 | stat(0) | = | lex |
| π(b#) | = | 1 |
| π(ql) | = | [] |
| π(qr) | = | 1 |
| π(b) | = | [] |
| π(r1) | = | [1] |
| π(m) | = | [] |
| π(1) | = | 1 |
| π(r0) | = | 1 |
| π(0) | = | 1 |
| 0(r0(x1)) | → | r0(0(x1)) | (16) |
| 1(r0(x1)) | → | r0(1(x1)) | (17) |
| 0(r1(x1)) | → | r1(0(x1)) | (19) |
| 1(r1(x1)) | → | r1(1(x1)) | (20) |
| b(r0(x1)) | → | b(0(qr(x1))) | (22) |
| b(r1(x1)) | → | b(1(qr(x1))) | (23) |
| qr(0(x1)) | → | 0(qr(x1)) | (24) |
| qr(1(x1)) | → | 1(qr(x1)) | (25) |
| qr(m(x1)) | → | m(ql(x1)) | (26) |
| 1(ql(b(x1))) | → | r1(b(1(x1))) | (30) |
| b#(r1(x1)) | → | b#(1(qr(x1))) | (40) |
There are no pairs anymore.
| 0#(r1(x1)) | → | 0#(x1) | (33) |
| 0#(r0(x1)) | → | 0#(x1) | (31) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| 0#(r1(x1)) | → | 0#(x1) | (33) |
| 1 | > | 1 | |
| 0#(r0(x1)) | → | 0#(x1) | (31) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.