The rewrite relation of the following TRS is considered.
r0(0(x1)) | → | 0(r0(x1)) | (1) |
r0(1(x1)) | → | 1(r0(x1)) | (2) |
r0(m(x1)) | → | m(r0(x1)) | (3) |
r1(0(x1)) | → | 0(r1(x1)) | (4) |
r1(1(x1)) | → | 1(r1(x1)) | (5) |
r1(m(x1)) | → | m(r1(x1)) | (6) |
r0(b(x1)) | → | qr(0(b(x1))) | (7) |
r1(b(x1)) | → | qr(1(b(x1))) | (8) |
0(qr(x1)) | → | qr(0(x1)) | (9) |
1(qr(x1)) | → | qr(1(x1)) | (10) |
m(qr(x1)) | → | ql(m(x1)) | (11) |
0(ql(x1)) | → | ql(0(x1)) | (12) |
1(ql(x1)) | → | ql(1(x1)) | (13) |
b(ql(0(x1))) | → | 0(b(r0(x1))) | (14) |
b(ql(1(x1))) | → | 1(b(r1(x1))) | (15) |
0(r0(x1)) | → | r0(0(x1)) | (16) |
1(r0(x1)) | → | r0(1(x1)) | (17) |
m(r0(x1)) | → | r0(m(x1)) | (18) |
0(r1(x1)) | → | r1(0(x1)) | (19) |
1(r1(x1)) | → | r1(1(x1)) | (20) |
m(r1(x1)) | → | r1(m(x1)) | (21) |
b(r0(x1)) | → | b(0(qr(x1))) | (22) |
b(r1(x1)) | → | b(1(qr(x1))) | (23) |
qr(0(x1)) | → | 0(qr(x1)) | (24) |
qr(1(x1)) | → | 1(qr(x1)) | (25) |
qr(m(x1)) | → | m(ql(x1)) | (26) |
ql(0(x1)) | → | 0(ql(x1)) | (27) |
ql(1(x1)) | → | 1(ql(x1)) | (28) |
0(ql(b(x1))) | → | r0(b(0(x1))) | (29) |
1(ql(b(x1))) | → | r1(b(1(x1))) | (30) |
[r1(x1)] | = |
|
||||||||||||||||||||||||
[r0(x1)] | = |
|
||||||||||||||||||||||||
[m(x1)] | = |
|
||||||||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||||||||
[ql(x1)] | = |
|
||||||||||||||||||||||||
[qr(x1)] | = |
|
||||||||||||||||||||||||
[1(x1)] | = |
|
m(r0(x1)) | → | r0(m(x1)) | (18) |
m(r1(x1)) | → | r1(m(x1)) | (21) |
[r1(x1)] | = |
|
||||||||||||||||||||||||
[r0(x1)] | = |
|
||||||||||||||||||||||||
[m(x1)] | = |
|
||||||||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||||||||
[ql(x1)] | = |
|
||||||||||||||||||||||||
[qr(x1)] | = |
|
||||||||||||||||||||||||
[1(x1)] | = |
|
0(ql(b(x1))) | → | r0(b(0(x1))) | (29) |
0#(r0(x1)) | → | 0#(x1) | (31) |
1#(r0(x1)) | → | 1#(x1) | (32) |
0#(r1(x1)) | → | 0#(x1) | (33) |
1#(r1(x1)) | → | 1#(x1) | (34) |
b#(r0(x1)) | → | qr#(x1) | (35) |
b#(r0(x1)) | → | 0#(qr(x1)) | (36) |
b#(r0(x1)) | → | b#(0(qr(x1))) | (37) |
b#(r1(x1)) | → | qr#(x1) | (38) |
b#(r1(x1)) | → | 1#(qr(x1)) | (39) |
b#(r1(x1)) | → | b#(1(qr(x1))) | (40) |
qr#(0(x1)) | → | qr#(x1) | (41) |
qr#(0(x1)) | → | 0#(qr(x1)) | (42) |
qr#(1(x1)) | → | qr#(x1) | (43) |
qr#(1(x1)) | → | 1#(qr(x1)) | (44) |
qr#(m(x1)) | → | ql#(x1) | (45) |
ql#(0(x1)) | → | ql#(x1) | (46) |
ql#(0(x1)) | → | 0#(ql(x1)) | (47) |
ql#(1(x1)) | → | ql#(x1) | (48) |
ql#(1(x1)) | → | 1#(ql(x1)) | (49) |
1#(ql(b(x1))) | → | 1#(x1) | (50) |
1#(ql(b(x1))) | → | b#(1(x1)) | (51) |
The dependency pairs are split into 2 components.
ql#(1(x1)) | → | ql#(x1) | (48) |
ql#(1(x1)) | → | 1#(ql(x1)) | (49) |
1#(ql(b(x1))) | → | b#(1(x1)) | (51) |
b#(r1(x1)) | → | b#(1(qr(x1))) | (40) |
b#(r1(x1)) | → | 1#(qr(x1)) | (39) |
1#(r1(x1)) | → | 1#(x1) | (34) |
1#(ql(b(x1))) | → | 1#(x1) | (50) |
1#(r0(x1)) | → | 1#(x1) | (32) |
b#(r1(x1)) | → | qr#(x1) | (38) |
qr#(m(x1)) | → | ql#(x1) | (45) |
ql#(0(x1)) | → | ql#(x1) | (46) |
qr#(1(x1)) | → | 1#(qr(x1)) | (44) |
qr#(1(x1)) | → | qr#(x1) | (43) |
qr#(0(x1)) | → | qr#(x1) | (41) |
b#(r0(x1)) | → | b#(0(qr(x1))) | (37) |
b#(r0(x1)) | → | qr#(x1) | (35) |
π(ql#) | = | { 1, 1 } |
π(qr#) | = | { 1, 1 } |
π(b#) | = | { 1, 1 } |
π(1#) | = | { 1, 1 } |
π(ql) | = | { 1 } |
π(qr) | = | { 1 } |
π(b) | = | { 1 } |
π(r1) | = | { 1 } |
π(m) | = | { 1 } |
π(1) | = | { 1 } |
π(r0) | = | { 1, 1, 1 } |
π(0) | = | { 1, 1 } |
1#(r0(x1)) | → | 1#(x1) | (32) |
ql#(0(x1)) | → | ql#(x1) | (46) |
qr#(0(x1)) | → | qr#(x1) | (41) |
b#(r0(x1)) | → | b#(0(qr(x1))) | (37) |
b#(r0(x1)) | → | qr#(x1) | (35) |
π(ql#) | = | { 1, 1 } |
π(qr#) | = | { 1, 1 } |
π(b#) | = | { 1, 1 } |
π(1#) | = | { 1 } |
π(ql) | = | { 1, 1 } |
π(qr) | = | { 1, 1 } |
π(b) | = | { 1 } |
π(r1) | = | { 1, 1 } |
π(m) | = | { 1 } |
π(1) | = | { 1 } |
π(r0) | = | { 1, 1 } |
π(0) | = | { 1 } |
b#(r1(x1)) | → | 1#(qr(x1)) | (39) |
1#(r1(x1)) | → | 1#(x1) | (34) |
1#(ql(b(x1))) | → | 1#(x1) | (50) |
b#(r1(x1)) | → | qr#(x1) | (38) |
The dependency pairs are split into 3 components.
qr#(1(x1)) | → | qr#(x1) | (43) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
qr#(1(x1)) | → | qr#(x1) | (43) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
ql#(1(x1)) | → | ql#(x1) | (48) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
ql#(1(x1)) | → | ql#(x1) | (48) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
b#(r1(x1)) | → | b#(1(qr(x1))) | (40) |
prec(b#) | = | 0 | stat(b#) | = | lex | |
prec(ql) | = | 1 | stat(ql) | = | lex | |
prec(qr) | = | 0 | stat(qr) | = | lex | |
prec(b) | = | 0 | stat(b) | = | lex | |
prec(r1) | = | 0 | stat(r1) | = | lex | |
prec(m) | = | 0 | stat(m) | = | lex | |
prec(1) | = | 0 | stat(1) | = | lex | |
prec(r0) | = | 0 | stat(r0) | = | lex | |
prec(0) | = | 0 | stat(0) | = | lex |
π(b#) | = | 1 |
π(ql) | = | [] |
π(qr) | = | 1 |
π(b) | = | [] |
π(r1) | = | [1] |
π(m) | = | [] |
π(1) | = | 1 |
π(r0) | = | 1 |
π(0) | = | 1 |
0(r0(x1)) | → | r0(0(x1)) | (16) |
1(r0(x1)) | → | r0(1(x1)) | (17) |
0(r1(x1)) | → | r1(0(x1)) | (19) |
1(r1(x1)) | → | r1(1(x1)) | (20) |
b(r0(x1)) | → | b(0(qr(x1))) | (22) |
b(r1(x1)) | → | b(1(qr(x1))) | (23) |
qr(0(x1)) | → | 0(qr(x1)) | (24) |
qr(1(x1)) | → | 1(qr(x1)) | (25) |
qr(m(x1)) | → | m(ql(x1)) | (26) |
1(ql(b(x1))) | → | r1(b(1(x1))) | (30) |
b#(r1(x1)) | → | b#(1(qr(x1))) | (40) |
There are no pairs anymore.
0#(r1(x1)) | → | 0#(x1) | (33) |
0#(r0(x1)) | → | 0#(x1) | (31) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
0#(r1(x1)) | → | 0#(x1) | (33) |
1 | > | 1 | |
0#(r0(x1)) | → | 0#(x1) | (31) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.