The rewrite relation of the following TRS is considered.
r1(a(x1)) | → | a(a(a(r1(x1)))) | (1) |
r2(a(x1)) | → | a(a(a(r2(x1)))) | (2) |
a(l1(x1)) | → | l1(a(a(a(x1)))) | (3) |
a(a(l2(x1))) | → | l2(a(a(x1))) | (4) |
r1(b(x1)) | → | l1(b(x1)) | (5) |
r2(b(x1)) | → | l2(a(b(x1))) | (6) |
b(l1(x1)) | → | b(r2(x1)) | (7) |
b(l2(x1)) | → | b(r1(x1)) | (8) |
a(a(x1)) | → | x1 | (9) |
a(r1(x1)) | → | r1(a(a(a(x1)))) | (10) |
a(r2(x1)) | → | r2(a(a(a(x1)))) | (11) |
l1(a(x1)) | → | a(a(a(l1(x1)))) | (12) |
l2(a(a(x1))) | → | a(a(l2(x1))) | (13) |
b(r1(x1)) | → | b(l1(x1)) | (14) |
b(r2(x1)) | → | b(a(l2(x1))) | (15) |
l1(b(x1)) | → | r2(b(x1)) | (16) |
l2(b(x1)) | → | r1(b(x1)) | (17) |
a(a(x1)) | → | x1 | (9) |
[l2(x1)] | = |
|
||||||||||||||||||||||||
[r1(x1)] | = |
|
||||||||||||||||||||||||
[l1(x1)] | = |
|
||||||||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||||||||
[a(x1)] | = |
|
||||||||||||||||||||||||
[r2(x1)] | = |
|
b(r1(x1)) | → | b(l1(x1)) | (14) |
[l2(x1)] | = | 2 · x1 + -∞ |
[r1(x1)] | = | 2 · x1 + -∞ |
[l1(x1)] | = | 15 · x1 + -∞ |
[b(x1)] | = | 1 · x1 + -∞ |
[a(x1)] | = | 0 · x1 + -∞ |
[r2(x1)] | = | 2 · x1 + -∞ |
l1(b(x1)) | → | r2(b(x1)) | (16) |
[l2(x1)] | = | 15 · x1 + -∞ |
[r1(x1)] | = | 4 · x1 + -∞ |
[l1(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 12 · x1 + -∞ |
[a(x1)] | = | 0 · x1 + -∞ |
[r2(x1)] | = | 15 · x1 + -∞ |
l2(b(x1)) | → | r1(b(x1)) | (17) |
[l2(x1)] | = | 4 · x1 + -∞ |
[r1(x1)] | = | 0 · x1 + -∞ |
[l1(x1)] | = | 12 · x1 + -∞ |
[b(x1)] | = | 2 · x1 + -∞ |
[a(x1)] | = | 0 · x1 + -∞ |
[r2(x1)] | = | 8 · x1 + -∞ |
b(r2(x1)) | → | b(a(l2(x1))) | (15) |
a#(r1(x1)) | → | a#(x1) | (18) |
a#(r1(x1)) | → | a#(a(x1)) | (19) |
a#(r1(x1)) | → | a#(a(a(x1))) | (20) |
a#(r2(x1)) | → | a#(x1) | (21) |
a#(r2(x1)) | → | a#(a(x1)) | (22) |
a#(r2(x1)) | → | a#(a(a(x1))) | (23) |
l1#(a(x1)) | → | l1#(x1) | (24) |
l1#(a(x1)) | → | a#(l1(x1)) | (25) |
l1#(a(x1)) | → | a#(a(l1(x1))) | (26) |
l1#(a(x1)) | → | a#(a(a(l1(x1)))) | (27) |
l2#(a(a(x1))) | → | l2#(x1) | (28) |
l2#(a(a(x1))) | → | a#(l2(x1)) | (29) |
l2#(a(a(x1))) | → | a#(a(l2(x1))) | (30) |
The dependency pairs are split into 3 components.
l1#(a(x1)) | → | l1#(x1) | (24) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
l1#(a(x1)) | → | l1#(x1) | (24) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
l2#(a(a(x1))) | → | l2#(x1) | (28) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
l2#(a(a(x1))) | → | l2#(x1) | (28) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
a#(r1(x1)) | → | a#(x1) | (18) |
a#(r1(x1)) | → | a#(a(x1)) | (19) |
a#(r1(x1)) | → | a#(a(a(x1))) | (20) |
a#(r2(x1)) | → | a#(x1) | (21) |
a#(r2(x1)) | → | a#(a(x1)) | (22) |
a#(r2(x1)) | → | a#(a(a(x1))) | (23) |
π(a#) | = | { 1, 1 } |
π(r2) | = | { 1, 1 } |
π(r1) | = | { 1, 1 } |
π(a) | = | { 1 } |
a#(r1(x1)) | → | a#(x1) | (18) |
a#(r1(x1)) | → | a#(a(x1)) | (19) |
a#(r1(x1)) | → | a#(a(a(x1))) | (20) |
a#(r2(x1)) | → | a#(x1) | (21) |
a#(r2(x1)) | → | a#(a(x1)) | (22) |
a#(r2(x1)) | → | a#(a(a(x1))) | (23) |
There are no pairs anymore.