The rewrite relation of the following TRS is considered.
| r1(a(x1)) | → | a(a(a(r1(x1)))) | (1) |
| r2(a(x1)) | → | a(a(a(r2(x1)))) | (2) |
| a(l1(x1)) | → | l1(a(a(a(x1)))) | (3) |
| a(a(l2(x1))) | → | l2(a(a(x1))) | (4) |
| r1(b(x1)) | → | l1(b(x1)) | (5) |
| r2(b(x1)) | → | l2(a(b(x1))) | (6) |
| b(l1(x1)) | → | b(r2(x1)) | (7) |
| b(l2(x1)) | → | b(r1(x1)) | (8) |
| a(a(x1)) | → | x1 | (9) |
| a(r1(x1)) | → | r1(a(a(a(x1)))) | (10) |
| a(r2(x1)) | → | r2(a(a(a(x1)))) | (11) |
| l1(a(x1)) | → | a(a(a(l1(x1)))) | (12) |
| l2(a(a(x1))) | → | a(a(l2(x1))) | (13) |
| b(r1(x1)) | → | b(l1(x1)) | (14) |
| b(r2(x1)) | → | b(a(l2(x1))) | (15) |
| l1(b(x1)) | → | r2(b(x1)) | (16) |
| l2(b(x1)) | → | r1(b(x1)) | (17) |
| a(a(x1)) | → | x1 | (9) |
| [l2(x1)] | = |
|
||||||||||||||||||||||||
| [r1(x1)] | = |
|
||||||||||||||||||||||||
| [l1(x1)] | = |
|
||||||||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||||||||
| [r2(x1)] | = |
|
| b(r1(x1)) | → | b(l1(x1)) | (14) |
| [l2(x1)] | = | 2 · x1 + -∞ |
| [r1(x1)] | = | 2 · x1 + -∞ |
| [l1(x1)] | = | 15 · x1 + -∞ |
| [b(x1)] | = | 1 · x1 + -∞ |
| [a(x1)] | = | 0 · x1 + -∞ |
| [r2(x1)] | = | 2 · x1 + -∞ |
| l1(b(x1)) | → | r2(b(x1)) | (16) |
| [l2(x1)] | = | 15 · x1 + -∞ |
| [r1(x1)] | = | 4 · x1 + -∞ |
| [l1(x1)] | = | 0 · x1 + -∞ |
| [b(x1)] | = | 12 · x1 + -∞ |
| [a(x1)] | = | 0 · x1 + -∞ |
| [r2(x1)] | = | 15 · x1 + -∞ |
| l2(b(x1)) | → | r1(b(x1)) | (17) |
| [l2(x1)] | = | 4 · x1 + -∞ |
| [r1(x1)] | = | 0 · x1 + -∞ |
| [l1(x1)] | = | 12 · x1 + -∞ |
| [b(x1)] | = | 2 · x1 + -∞ |
| [a(x1)] | = | 0 · x1 + -∞ |
| [r2(x1)] | = | 8 · x1 + -∞ |
| b(r2(x1)) | → | b(a(l2(x1))) | (15) |
| a#(r1(x1)) | → | a#(x1) | (18) |
| a#(r1(x1)) | → | a#(a(x1)) | (19) |
| a#(r1(x1)) | → | a#(a(a(x1))) | (20) |
| a#(r2(x1)) | → | a#(x1) | (21) |
| a#(r2(x1)) | → | a#(a(x1)) | (22) |
| a#(r2(x1)) | → | a#(a(a(x1))) | (23) |
| l1#(a(x1)) | → | l1#(x1) | (24) |
| l1#(a(x1)) | → | a#(l1(x1)) | (25) |
| l1#(a(x1)) | → | a#(a(l1(x1))) | (26) |
| l1#(a(x1)) | → | a#(a(a(l1(x1)))) | (27) |
| l2#(a(a(x1))) | → | l2#(x1) | (28) |
| l2#(a(a(x1))) | → | a#(l2(x1)) | (29) |
| l2#(a(a(x1))) | → | a#(a(l2(x1))) | (30) |
The dependency pairs are split into 3 components.
| l1#(a(x1)) | → | l1#(x1) | (24) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| l1#(a(x1)) | → | l1#(x1) | (24) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| l2#(a(a(x1))) | → | l2#(x1) | (28) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| l2#(a(a(x1))) | → | l2#(x1) | (28) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| a#(r1(x1)) | → | a#(x1) | (18) |
| a#(r1(x1)) | → | a#(a(x1)) | (19) |
| a#(r1(x1)) | → | a#(a(a(x1))) | (20) |
| a#(r2(x1)) | → | a#(x1) | (21) |
| a#(r2(x1)) | → | a#(a(x1)) | (22) |
| a#(r2(x1)) | → | a#(a(a(x1))) | (23) |
| π(a#) | = | { 1, 1 } |
| π(r2) | = | { 1, 1 } |
| π(r1) | = | { 1, 1 } |
| π(a) | = | { 1 } |
| a#(r1(x1)) | → | a#(x1) | (18) |
| a#(r1(x1)) | → | a#(a(x1)) | (19) |
| a#(r1(x1)) | → | a#(a(a(x1))) | (20) |
| a#(r2(x1)) | → | a#(x1) | (21) |
| a#(r2(x1)) | → | a#(a(x1)) | (22) |
| a#(r2(x1)) | → | a#(a(a(x1))) | (23) |
There are no pairs anymore.