The rewrite relation of the following TRS is considered.
| a(l(x1)) | → | l(a(x1)) | (1) |
| a(c(x1)) | → | c(a(x1)) | (2) |
| c(a(r(x1))) | → | r(a(x1)) | (3) |
| l(r(a(x1))) | → | a(l(c(c(r(x1))))) | (4) |
| l(a(x1)) | → | a(l(x1)) | (5) |
| c(a(x1)) | → | a(c(x1)) | (6) |
| r(a(c(x1))) | → | a(r(x1)) | (7) |
| a(r(l(x1))) | → | r(c(c(l(a(x1))))) | (8) |
| l#(a(x1)) | → | l#(x1) | (9) |
| l#(a(x1)) | → | a#(l(x1)) | (10) |
| c#(a(x1)) | → | c#(x1) | (11) |
| c#(a(x1)) | → | a#(c(x1)) | (12) |
| r#(a(c(x1))) | → | r#(x1) | (13) |
| r#(a(c(x1))) | → | a#(r(x1)) | (14) |
| a#(r(l(x1))) | → | a#(x1) | (15) |
| a#(r(l(x1))) | → | l#(a(x1)) | (16) |
| a#(r(l(x1))) | → | c#(l(a(x1))) | (17) |
| a#(r(l(x1))) | → | c#(c(l(a(x1)))) | (18) |
| a#(r(l(x1))) | → | r#(c(c(l(a(x1))))) | (19) |
The dependency pairs are split into 3 components.
| r#(a(c(x1))) | → | r#(x1) | (13) |
| r#(a(c(x1))) | → | a#(r(x1)) | (14) |
| a#(r(l(x1))) | → | r#(c(c(l(a(x1))))) | (19) |
| a#(r(l(x1))) | → | a#(x1) | (15) |
| π(r#) | = | { 1, 1 } |
| π(a#) | = | { 1, 1 } |
| π(r) | = | { 1, 1 } |
| π(c) | = | { 1 } |
| π(a) | = | { 1, 1 } |
| π(l) | = | { 1 } |
| r#(a(c(x1))) | → | r#(x1) | (13) |
| a#(r(l(x1))) | → | a#(x1) | (15) |
| [a(x1)] | = |
|
||||||||||||||||||||||||
| [r(x1)] | = |
|
||||||||||||||||||||||||
| [a#(x1)] | = |
|
||||||||||||||||||||||||
| [l(x1)] | = |
|
||||||||||||||||||||||||
| [r#(x1)] | = |
|
||||||||||||||||||||||||
| [c(x1)] | = |
|
| l(a(x1)) | → | a(l(x1)) | (5) |
| c(a(x1)) | → | a(c(x1)) | (6) |
| r(a(c(x1))) | → | a(r(x1)) | (7) |
| a(r(l(x1))) | → | r(c(c(l(a(x1))))) | (8) |
| a#(r(l(x1))) | → | r#(c(c(l(a(x1))))) | (19) |
The dependency pairs are split into 0 components.
| l#(a(x1)) | → | l#(x1) | (9) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| l#(a(x1)) | → | l#(x1) | (9) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| c#(a(x1)) | → | c#(x1) | (11) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| c#(a(x1)) | → | c#(x1) | (11) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.