The rewrite relation of the following TRS is considered.
a(a(a(b(b(x1))))) | → | b(b(b(x1))) | (1) |
b(a(a(a(b(x1))))) | → | a(a(a(b(a(a(a(x1))))))) | (2) |
a(a(a(x1))) | → | a(a(x1)) | (3) |
b(b(x1)) | → | a(b(a(x1))) | (4) |
[a(x1)] | = | 2 · x1 + -∞ |
[b(x1)] | = | 6 · x1 + -∞ |
a(a(a(x1))) | → | a(a(x1)) | (3) |
b(b(x1)) | → | a(b(a(x1))) | (4) |
a#(a(a(b(b(x1))))) | → | b#(b(b(x1))) | (5) |
b#(a(a(a(b(x1))))) | → | a#(x1) | (6) |
b#(a(a(a(b(x1))))) | → | a#(a(x1)) | (7) |
b#(a(a(a(b(x1))))) | → | a#(a(a(x1))) | (8) |
b#(a(a(a(b(x1))))) | → | b#(a(a(a(x1)))) | (9) |
b#(a(a(a(b(x1))))) | → | a#(b(a(a(a(x1))))) | (10) |
b#(a(a(a(b(x1))))) | → | a#(a(b(a(a(a(x1)))))) | (11) |
b#(a(a(a(b(x1))))) | → | a#(a(a(b(a(a(a(x1))))))) | (12) |
[a(x1)] | = | 1 · x1 + 1 |
[b#(x1)] | = | 2 · x1 + 4 |
[b(x1)] | = | 1 · x1 + 3 |
[a#(x1)] | = | 2 · x1 + 0 |
a(a(a(b(b(x1))))) | → | b(b(b(x1))) | (1) |
b(a(a(a(b(x1))))) | → | a(a(a(b(a(a(a(x1))))))) | (2) |
b#(a(a(a(b(x1))))) | → | a#(x1) | (6) |
b#(a(a(a(b(x1))))) | → | a#(a(x1)) | (7) |
b#(a(a(a(b(x1))))) | → | a#(a(a(x1))) | (8) |
b#(a(a(a(b(x1))))) | → | b#(a(a(a(x1)))) | (9) |
b#(a(a(a(b(x1))))) | → | a#(b(a(a(a(x1))))) | (10) |
b#(a(a(a(b(x1))))) | → | a#(a(b(a(a(a(x1)))))) | (11) |
[a(x1)] | = |
|
||||||||||||||||||||||||
[b#(x1)] | = |
|
||||||||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||||||||
[a#(x1)] | = |
|
a(a(a(b(b(x1))))) | → | b(b(b(x1))) | (1) |
b(a(a(a(b(x1))))) | → | a(a(a(b(a(a(a(x1))))))) | (2) |
a#(a(a(b(b(x1))))) | → | b#(b(b(x1))) | (5) |
The dependency pairs are split into 0 components.