Certification Problem
Input (TPDB SRS_Standard/Zantema_06/beans5)
The rewrite relation of the following TRS is considered.
b(a(a(x1))) |
→ |
a(b(c(x1))) |
(1) |
c(a(x1)) |
→ |
a(c(x1)) |
(2) |
c(b(x1)) |
→ |
b(a(x1)) |
(3) |
a(a(x1)) |
→ |
a(b(a(x1))) |
(4) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by ttt2 @ termCOMP 2023)
1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
a(a(b(x1))) |
→ |
c(b(a(x1))) |
(5) |
a(c(x1)) |
→ |
c(a(x1)) |
(6) |
b(c(x1)) |
→ |
a(b(x1)) |
(7) |
a(a(x1)) |
→ |
a(b(a(x1))) |
(4) |
1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
a#(a(b(x1))) |
→ |
a#(x1) |
(8) |
a#(a(b(x1))) |
→ |
b#(a(x1)) |
(9) |
a#(c(x1)) |
→ |
a#(x1) |
(10) |
b#(c(x1)) |
→ |
b#(x1) |
(11) |
b#(c(x1)) |
→ |
a#(b(x1)) |
(12) |
a#(a(x1)) |
→ |
b#(a(x1)) |
(13) |
a#(a(x1)) |
→ |
a#(b(a(x1))) |
(14) |
1.1.1 Subterm Criterion Processor
We use the projection to multisets
π(b#)
|
= |
{
1, 1
}
|
π(a#)
|
= |
{
1, 1
}
|
π(c)
|
= |
{
1, 1
}
|
π(b)
|
= |
{
1
}
|
π(a)
|
= |
{
1, 1
}
|
to remove the pairs:
a#(a(b(x1))) |
→ |
a#(x1) |
(8) |
a#(c(x1)) |
→ |
a#(x1) |
(10) |
b#(c(x1)) |
→ |
b#(x1) |
(11) |
b#(c(x1)) |
→ |
a#(b(x1)) |
(12) |
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.