The rewrite relation of the following equational TRS is considered.
sum(x,y) | → | S(int(x,y)) | (1) |
S(nil) | → | 0 | (2) |
S(cons(x,xs)) | → | plus(x,S(xs)) | (3) |
plus(x,0) | → | x | (4) |
plus(x,s(y)) | → | s(plus(x,y)) | (5) |
int(0,0) | → | cons(0,nil) | (6) |
int(0,s(y)) | → | cons(0,int(s(0),s(y))) | (7) |
int(s(x),0) | → | nil | (8) |
int(s(x),s(y)) | → | intlist(int(x,y)) | (9) |
intlist(nil) | → | nil | (10) |
intlist(cons(x,y)) | → | cons(s(x),intlist(y)) | (11) |
Associative symbols: plus
Commutative symbols: plus
[plus(x1, x2)] | = | 1 · x2 + 1 · x1 |
[sum(x1, x2)] | = | 2 + 1 · x2 + 1 · x1 + 1 · x1 · x2 |
[S(x1)] | = | 1 · x1 |
[int(x1, x2)] | = | 1 + 1 · x2 + 1 · x1 |
[nil] | = | 0 |
[0] | = | 0 |
[cons(x1, x2)] | = | 1 · x2 + 2 · x1 |
[s(x1)] | = | 1 · x1 |
[intlist(x1)] | = | 1 · x1 |
sum(x,y) | → | S(int(x,y)) | (1) |
int(0,0) | → | cons(0,nil) | (6) |
int(s(x),0) | → | nil | (8) |
[plus(x1, x2)] | = | 1 · x2 + 1 · x1 |
[S(x1)] | = | 2 · x1 |
[nil] | = | 1 |
[0] | = | 0 |
[cons(x1, x2)] | = | 1 · x2 + 2 · x1 |
[s(x1)] | = | 1 · x1 |
[int(x1, x2)] | = | 1 · x2 + 2 · x1 |
[intlist(x1)] | = | 1 · x1 |
S(nil) | → | 0 | (2) |
The following set of (strict) dependency pairs is constructed for the TRS.
S#(cons(x,xs)) | → | plus#(x,S(xs)) | (17) |
S#(cons(x,xs)) | → | S#(xs) | (18) |
plus#(x,s(y)) | → | plus#(x,y) | (19) |
int#(0,s(y)) | → | int#(s(0),s(y)) | (20) |
int#(s(x),s(y)) | → | intlist#(int(x,y)) | (21) |
int#(s(x),s(y)) | → | int#(x,y) | (22) |
intlist#(cons(x,y)) | → | intlist#(y) | (23) |
plus#(plus(x,0),ext) | → | plus#(x,ext) | (24) |
plus#(plus(x,s(y)),ext) | → | plus#(s(plus(x,y)),ext) | (25) |
plus#(plus(x,s(y)),ext) | → | plus#(x,y) | (26) |
plus(plus(x,0),ext) | → | plus(x,ext) | (27) |
plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (28) |
The dependency pairs are split into 4 components.
S#(cons(x,xs)) | → | S#(xs) | (18) |
[S#(x1)] | = | 3 · x1 |
[cons(x1, x2)] | = | 1 · x1 + 3 · x2 |
S#(cons(x,xs)) | → | S#(xs) | (18) |
S(cons(x,xs)) | → | plus(x,S(xs)) | (3) |
plus(x,0) | → | x | (4) |
plus(x,s(y)) | → | s(plus(x,y)) | (5) |
int(0,s(y)) | → | cons(0,int(s(0),s(y))) | (7) |
int(s(x),s(y)) | → | intlist(int(x,y)) | (9) |
intlist(nil) | → | nil | (10) |
intlist(cons(x,y)) | → | cons(s(x),intlist(y)) | (11) |
plus(plus(x,0),ext) | → | plus(x,ext) | (27) |
plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (28) |
plus#(plus(x,0),ext) | → | plus#(x,ext) | (24) |
plus#(x,s(y)) | → | plus#(x,y) | (19) |
plus#(plus(x,s(y)),ext) | → | plus#(s(plus(x,y)),ext) | (25) |
plus#(plus(x,s(y)),ext) | → | plus#(x,y) | (26) |
plus#(plus(x,y),z) | → | plus#(y,z) | (16) |
plus#(x,y) | → | plus#(y,x) | (14) |
plus#(plus(x,y),z) | → | plus#(x,plus(y,z)) | (15) |
[plus#(x1, x2)] | = | 2 · x1 + 2 · x2 |
[plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
[s(x1)] | = | 1 · x1 |
[0] | = | 0 |
plus(x,s(y)) | → | s(plus(x,y)) | (5) |
plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (28) |
plus(x,0) | → | x | (4) |
plus(plus(x,0),ext) | → | plus(x,ext) | (27) |
plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (13) |
plus(x,y) | → | plus(y,x) | (12) |
plus#(plus(x,0),ext) | → | plus#(x,ext) | (24) |
S(cons(x,xs)) | → | plus(x,S(xs)) | (3) |
plus(x,0) | → | x | (4) |
int(0,s(y)) | → | cons(0,int(s(0),s(y))) | (7) |
int(s(x),s(y)) | → | intlist(int(x,y)) | (9) |
intlist(nil) | → | nil | (10) |
intlist(cons(x,y)) | → | cons(s(x),intlist(y)) | (11) |
plus(plus(x,0),ext) | → | plus(x,ext) | (27) |
[plus#(x1, x2)] | = | 1 · x1 + 1 · x2 |
[plus(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
[s(x1)] | = | 2 + 1 · x1 |
plus(x,s(y)) | → | s(plus(x,y)) | (5) |
plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (28) |
plus(x,y) | → | plus(y,x) | (12) |
plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (13) |
plus#(plus(x,y),z) | → | plus#(y,z) | (16) |
plus#(plus(x,s(y)),ext) | → | plus#(x,y) | (26) |
plus#(x,s(y)) | → | plus#(x,y) | (19) |
[plus#(x1, x2)] | = | 1 · x1 + 1 · x2 |
[plus(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[s(x1)] | = | 0 |
plus(x,s(y)) | → | s(plus(x,y)) | (5) |
plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (28) |
plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (13) |
plus(x,y) | → | plus(y,x) | (12) |
plus#(plus(x,s(y)),ext) | → | plus#(s(plus(x,y)),ext) | (25) |
int#(s(x),s(y)) | → | int#(x,y) | (22) |
int#(0,s(y)) | → | int#(s(0),s(y)) | (20) |
[int#(x1, x2)] | = | 1 · x1 + 3 · x2 |
[0] | = | 0 |
[s(x1)] | = | 1 · x1 |
S(cons(x,xs)) | → | plus(x,S(xs)) | (3) |
plus(x,0) | → | x | (4) |
plus(x,s(y)) | → | s(plus(x,y)) | (5) |
int(0,s(y)) | → | cons(0,int(s(0),s(y))) | (7) |
int(s(x),s(y)) | → | intlist(int(x,y)) | (9) |
intlist(nil) | → | nil | (10) |
intlist(cons(x,y)) | → | cons(s(x),intlist(y)) | (11) |
plus(plus(x,0),ext) | → | plus(x,ext) | (27) |
plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (28) |
[int#(x1, x2)] | = | 3 · x2 |
[0] | = | 0 |
[s(x1)] | = | 2 + 2 · x1 |
int#(s(x),s(y)) | → | int#(x,y) | (22) |
The dependency pairs are split into 0 components.
intlist#(cons(x,y)) | → | intlist#(y) | (23) |
[intlist#(x1)] | = | 3 · x1 |
[cons(x1, x2)] | = | 1 · x1 + 3 · x2 |
intlist#(cons(x,y)) | → | intlist#(y) | (23) |
S(cons(x,xs)) | → | plus(x,S(xs)) | (3) |
plus(x,0) | → | x | (4) |
plus(x,s(y)) | → | s(plus(x,y)) | (5) |
int(0,s(y)) | → | cons(0,int(s(0),s(y))) | (7) |
int(s(x),s(y)) | → | intlist(int(x,y)) | (9) |
intlist(nil) | → | nil | (10) |
intlist(cons(x,y)) | → | cons(s(x),intlist(y)) | (11) |
plus(plus(x,0),ext) | → | plus(x,ext) | (27) |
plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (28) |