The rewrite relation of the following equational TRS is considered.
plus(x,0) | → | x | (1) |
plus(x,x) | → | x | (2) |
plus(T(x),x) | → | T(x) | (3) |
plus(T(plus(x,y)),x) | → | T(plus(x,y)) | (4) |
L(T(x)) | → | L(x) | (5) |
L(plus(T(y),x)) | → | plus(L(plus(x,y)),L(y)) | (6) |
T(T(x)) | → | T(x) | (7) |
T(plus(T(y),x)) | → | plus(T(plus(x,y)),T(y)) | (8) |
Associative symbols: plus
Commutative symbols: plus
[plus(x1, x2)] | = | 3 + 1 · x2 + 1 · x1 |
[0] | = | 3 |
[T(x1)] | = | 2 + 3 · x1 + 2 · x1 · x1 |
[L(x1)] | = | 2 · x1 · x1 |
plus(x,0) | → | x | (1) |
plus(x,x) | → | x | (2) |
plus(T(x),x) | → | T(x) | (3) |
plus(T(plus(x,y)),x) | → | T(plus(x,y)) | (4) |
L(T(x)) | → | L(x) | (5) |
L(plus(T(y),x)) | → | plus(L(plus(x,y)),L(y)) | (6) |
T(T(x)) | → | T(x) | (7) |
T(plus(T(y),x)) | → | plus(T(plus(x,y)),T(y)) | (8) |
There are no rules in the TRS. Hence, it is AC-terminating.