Certification Problem

Input (TPDB TRS_Equational/Mixed_AC/intersect)

The rewrite relation of the following equational TRS is considered.

if(true,x,y) x (1)
if(false,x,y) y (2)
eq(0,0) true (3)
eq(0,s(x)) false (4)
eq(s(x),s(y)) eq(x,y) (5)
union(empty,x) x (6)
inter(empty,x) empty (7)
inter(union(y,z),x) union(inter(x,y),inter(x,z)) (8)
inter(singl(x),singl(y)) if(eq(x,y),singl(x),empty) (9)

Associative symbols: inter, union

Commutative symbols: eq, inter, union

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[eq(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[inter(x1, x2)] = 2 + 2 · x2 + 2 · x1 + 1 · x1 · x2
[union(x1, x2)] = 3 + 1 · x2 + 1 · x1
[if(x1, x2, x3)] = 2 · x3 + 1 · x2 + 1 · x1
[true] = 0
[false] = 2
[0] = 3
[s(x1)] = 2 · x1 + 1 · x1 · x1
[empty] = 1
[singl(x1)] = 3 + 2 · x1
the rules
if(false,x,y) y (2)
eq(0,0) true (3)
eq(0,s(x)) false (4)
union(empty,x) x (6)
inter(empty,x) empty (7)
inter(union(y,z),x) union(inter(x,y),inter(x,z)) (8)
inter(singl(x),singl(y)) if(eq(x,y),singl(x),empty) (9)
can be deleted.

1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[eq(x1, x2)] = 3 + 1 · x2 + 1 · x1
[inter(x1, x2)] = 1 + 2 · x2 + 2 · x1 + 2 · x1 · x2
[union(x1, x2)] = 2 + 3 · x2 + 3 · x1 + 3 · x1 · x2
[if(x1, x2, x3)] = 1 · x3 + 3 · x2 + 3 · x1 + 3 · x1 · x2
[true] = 1
[s(x1)] = 1 · x1 + 1 · x1 · x1
the rule
if(true,x,y) x (1)
can be deleted.

1.1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[eq(x1, x2)] = 3 + 1 · x2 + 1 · x1
[inter(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[union(x1, x2)] = 2 + 3 · x2 + 3 · x1 + 3 · x1 · x2
[s(x1)] = 1 + 1 · x1 + 3 · x1 · x1
the rule
eq(s(x),s(y)) eq(x,y) (5)
can be deleted.

1.1.1.1 R is empty

There are no rules in the TRS. Hence, it is AC-terminating.