The rewrite relation of the following equational TRS is considered.
union(empty,X) | → | X | (1) |
max(singl(x)) | → | x | (2) |
max(union(singl(x),singl(0))) | → | x | (3) |
max(union(singl(s(x)),singl(s(y)))) | → | s(max(union(singl(x),singl(y)))) | (4) |
max(union(singl(x),union(Y,Z))) | → | max(union(singl(x),singl(max(union(Y,Z))))) | (5) |
Associative symbols: union
Commutative symbols: union
The following set of (strict) dependency pairs is constructed for the TRS.
max#(union(singl(x),union(Y,Z))) | → | max#(union(Y,Z)) | (11) |
max#(union(singl(s(x)),singl(s(y)))) | → | max#(union(singl(x),singl(y))) | (12) |
max#(union(singl(x),union(Y,Z))) | → | union#(singl(x),singl(max(union(Y,Z)))) | (13) |
max#(union(singl(s(x)),singl(s(y)))) | → | union#(singl(x),singl(y)) | (14) |
max#(union(singl(x),union(Y,Z))) | → | max#(union(singl(x),singl(max(union(Y,Z))))) | (15) |
The dependency pairs are split into 2 components.
max#(union(singl(x),union(Y,Z))) | → | max#(union(singl(x),singl(max(union(Y,Z))))) | (15) |
max#(union(singl(x),union(Y,Z))) | → | max#(union(Y,Z)) | (11) |
max#(union(singl(s(x)),singl(s(y)))) | → | max#(union(singl(x),singl(y))) | (12) |
[s(x1)] | = | 2 |
[0] | = | 1 |
[max(x1)] | = | 1 |
[union(x1, x2)] | = | x1 + x2 + 20539 |
[max#(x1)] | = | x1 + 0 |
[singl(x1)] | = | 20538 |
[empty] | = | 1 |
[union#(x1, x2)] | = | 0 |
union(empty,X) | → | X | (1) |
union(x,y) | → | union(y,x) | (7) |
union(x,union(y,z)) | → | union(union(x,y),z) | (6) |
max#(union(singl(x),union(Y,Z))) | → | max#(union(Y,Z)) | (11) |
max#(union(singl(x),union(Y,Z))) | → | max#(union(singl(x),singl(max(union(Y,Z))))) | (15) |
The dependency pairs are split into 1 component.
max#(union(singl(s(x)),singl(s(y)))) | → | max#(union(singl(x),singl(y))) | (12) |
[s(x1)] | = | x1 + 1 |
[0] | = | 35632 |
[max(x1)] | = | x1 + 0 |
[union(x1, x2)] | = | x1 + x2 + 47339 |
[max#(x1)] | = | x1 + 0 |
[singl(x1)] | = | x1 + 0 |
[empty] | = | 3564 |
[union#(x1, x2)] | = | 0 |
max(union(singl(s(x)),singl(s(y)))) | → | s(max(union(singl(x),singl(y)))) | (4) |
union(empty,X) | → | X | (1) |
max(union(singl(x),singl(0))) | → | x | (3) |
max(union(singl(x),union(Y,Z))) | → | max(union(singl(x),singl(max(union(Y,Z))))) | (5) |
union(x,y) | → | union(y,x) | (7) |
union(x,union(y,z)) | → | union(union(x,y),z) | (6) |
max(singl(x)) | → | x | (2) |
max#(union(singl(s(x)),singl(s(y)))) | → | max#(union(singl(x),singl(y))) | (12) |
The dependency pairs are split into 0 components.
union#(x,union(y,z)) | → | union#(union(x,y),z) | (10) |
union#(x,y) | → | union#(y,x) | (9) |
union#(x,union(y,z)) | → | union#(x,y) | (8) |
The extended rules of the TRS
union(union(empty,X),_1) | → | union(X,_1) | (16) |
The dependency pairs are split into 1 component.
union#(union(empty,X),_1) | → | union#(X,_1) | (17) |
union#(x,y) | → | union#(y,x) | (9) |
union#(x,union(y,z)) | → | union#(union(x,y),z) | (10) |
union#(x,union(y,z)) | → | union#(x,y) | (8) |
[s(x1)] | = | x1 + 1 |
[0] | = | 42199 |
[max(x1)] | = | x1 + 0 |
[union(x1, x2)] | = | x1 + x2 + 1 |
[max#(x1)] | = | x1 + 0 |
[singl(x1)] | = | x1 + 0 |
[empty] | = | 38145 |
[union#(x1, x2)] | = | x1 + x2 + 0 |
max(union(singl(s(x)),singl(s(y)))) | → | s(max(union(singl(x),singl(y)))) | (4) |
union(empty,X) | → | X | (1) |
max(union(singl(x),singl(0))) | → | x | (3) |
max(union(singl(x),union(Y,Z))) | → | max(union(singl(x),singl(max(union(Y,Z))))) | (5) |
union(x,y) | → | union(y,x) | (7) |
union(x,union(y,z)) | → | union(union(x,y),z) | (6) |
max(singl(x)) | → | x | (2) |
union#(x,union(y,z)) | → | union#(x,y) | (8) |
union#(union(empty,X),_1) | → | union#(X,_1) | (17) |
The dependency pairs are split into 1 component.
union#(x,y) | → | union#(y,x) | (9) |
union#(x,union(y,z)) | → | union#(union(x,y),z) | (10) |