The rewrite relation of the following equational TRS is considered.
| 1 | → | s(0) | (1) |
| 2 | → | s(1) | (2) |
| 3 | → | s(2) | (3) |
| 4 | → | s(3) | (4) |
| 5 | → | s(4) | (5) |
| 6 | → | s(5) | (6) |
| 7 | → | s(6) | (7) |
| 8 | → | s(7) | (8) |
| 9 | → | s(8) | (9) |
| max'(0,x) | → | x | (10) |
| max'(s(x),s(y)) | → | s(max'(x,y)) | (11) |
| app(empty,X) | → | X | (12) |
| max(singl(x)) | → | x | (13) |
| max(app(singl(x),Y)) | → | max2(x,Y) | (14) |
| max2(x,empty) | → | x | (15) |
| max2(x,singl(y)) | → | max'(x,y) | (16) |
| max2(x,app(singl(y),Z)) | → | max2(max'(x,y),Z) | (17) |
Associative symbols: app
Commutative symbols: max', app
The following set of (strict) dependency pairs is constructed for the TRS.
| 6# | → | 5# | (25) |
| max2#(x,singl(y)) | → | max'#(x,y) | (26) |
| max2#(x,app(singl(y),Z)) | → | max2#(max'(x,y),Z) | (27) |
| 3# | → | 2# | (28) |
| 7# | → | 6# | (29) |
| max2#(x,app(singl(y),Z)) | → | max'#(x,y) | (30) |
| max#(app(singl(x),Y)) | → | max2#(x,Y) | (31) |
| 4# | → | 3# | (32) |
| 9# | → | 8# | (33) |
| 2# | → | 1# | (34) |
| 5# | → | 4# | (35) |
| 8# | → | 7# | (36) |
| max'#(s(x),s(y)) | → | max'#(x,y) | (37) |
The dependency pairs are split into 3 components.
| app#(x,app(y,z)) | → | app#(x,y) | (23) |
| app#(x,app(y,z)) | → | app#(app(x,y),z) | (22) |
| app#(x,y) | → | app#(y,x) | (21) |
| max2#(x,app(singl(y),Z)) | → | max2#(max'(x,y),Z) | (27) |
| [7] | = | 0 |
| [1] | = | 0 |
| [4] | = | 0 |
| [s(x1)] | = | x1 + 1 |
| [7#] | = | 0 |
| [max2(x1, x2)] | = | 0 |
| [max'(x1, x2)] | = | x1 + x2 + 1 |
| [5] | = | 0 |
| [max'#(x1, x2)] | = | 0 |
| [3] | = | 0 |
| [6#] | = | 0 |
| [8#] | = | 0 |
| [2#] | = | 0 |
| [9] | = | 0 |
| [max2#(x1, x2)] | = | x1 + x2 + 0 |
| [8] | = | 0 |
| [4#] | = | 0 |
| [9#] | = | 0 |
| [0] | = | 10157 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [3#] | = | 0 |
| [app#(x1, x2)] | = | 0 |
| [singl(x1)] | = | x1 + 2 |
| [5#] | = | 0 |
| [2] | = | 0 |
| [empty] | = | 0 |
| [6] | = | 0 |
| [1#] | = | 0 |
| [app(x1, x2)] | = | x1 + x2 + 11797 |
| max'(x,y) | → | max'(y,x) | (20) |
| max'(0,x) | → | x | (10) |
| max'(s(x),s(y)) | → | s(max'(x,y)) | (11) |
| max2#(x,app(singl(y),Z)) | → | max2#(max'(x,y),Z) | (27) |
The dependency pairs are split into 0 components.
| max'#(s(x),s(y)) | → | max'#(x,y) | (37) |
| max'#(x,y) | → | max'#(y,x) | (24) |
| [7] | = | 0 |
| [1] | = | 0 |
| [4] | = | 0 |
| [s(x1)] | = | x1 + 1 |
| [7#] | = | 0 |
| [max2(x1, x2)] | = | 0 |
| [max'(x1, x2)] | = | x1 + x2 + 1 |
| [5] | = | 0 |
| [max'#(x1, x2)] | = | x1 + x2 + 0 |
| [3] | = | 0 |
| [6#] | = | 0 |
| [8#] | = | 0 |
| [2#] | = | 0 |
| [9] | = | 0 |
| [max2#(x1, x2)] | = | x1 + 0 |
| [8] | = | 0 |
| [4#] | = | 0 |
| [9#] | = | 0 |
| [0] | = | 10157 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [3#] | = | 0 |
| [app#(x1, x2)] | = | 0 |
| [singl(x1)] | = | 2 |
| [5#] | = | 0 |
| [2] | = | 0 |
| [empty] | = | 0 |
| [6] | = | 0 |
| [1#] | = | 0 |
| [app(x1, x2)] | = | 11797 |
| max'(x,y) | → | max'(y,x) | (20) |
| max'(0,x) | → | x | (10) |
| max'(s(x),s(y)) | → | s(max'(x,y)) | (11) |
| max'#(s(x),s(y)) | → | max'#(x,y) | (37) |
The dependency pairs are split into 1 component.
| max'#(x,y) | → | max'#(y,x) | (24) |
The extended rules of the TRS
| app(app(empty,X),_1) | → | app(X,_1) | (38) |
The dependency pairs are split into 2 components.
| max'#(x,y) | → | max'#(y,x) | (24) |
| app#(app(empty,X),_1) | → | app#(X,_1) | (39) |
| app#(x,app(y,z)) | → | app#(x,y) | (23) |
| app#(x,y) | → | app#(y,x) | (21) |
| app#(x,app(y,z)) | → | app#(app(x,y),z) | (22) |
| [7] | = | 0 |
| [1] | = | 0 |
| [4] | = | 0 |
| [s(x1)] | = | x1 + 1 |
| [7#] | = | 0 |
| [max2(x1, x2)] | = | 0 |
| [max'(x1, x2)] | = | x1 + x2 + 1 |
| [5] | = | 0 |
| [max'#(x1, x2)] | = | 0 |
| [3] | = | 0 |
| [6#] | = | 0 |
| [8#] | = | 0 |
| [2#] | = | 0 |
| [9] | = | 0 |
| [max2#(x1, x2)] | = | x1 + 0 |
| [8] | = | 0 |
| [4#] | = | 0 |
| [9#] | = | 0 |
| [0] | = | 10157 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [3#] | = | 0 |
| [app#(x1, x2)] | = | x1 + x2 + 0 |
| [singl(x1)] | = | 2 |
| [5#] | = | 0 |
| [2] | = | 0 |
| [empty] | = | 40651 |
| [6] | = | 0 |
| [1#] | = | 0 |
| [app(x1, x2)] | = | x1 + x2 + 11797 |
| max'(x,y) | → | max'(y,x) | (20) |
| app(x,app(y,z)) | → | app(app(x,y),z) | (19) |
| max'(0,x) | → | x | (10) |
| app(x,y) | → | app(y,x) | (18) |
| app(empty,X) | → | X | (12) |
| max'(s(x),s(y)) | → | s(max'(x,y)) | (11) |
| app#(x,app(y,z)) | → | app#(x,y) | (23) |
| app#(app(empty,X),_1) | → | app#(X,_1) | (39) |
The dependency pairs are split into 1 component.
| app#(x,app(y,z)) | → | app#(app(x,y),z) | (22) |
| app#(x,y) | → | app#(y,x) | (21) |