The rewrite relation of the following equational TRS is considered.
eq(0,0) | → | true | (1) |
eq(0,s(x)) | → | false | (2) |
eq(s(x),0) | → | false | (3) |
eq(s(x),s(y)) | → | eq(x,y) | (4) |
rm(n,nil) | → | nil | (5) |
rm(n,add(m,x)) | → | if_rm(eq(n,m),n,add(m,x)) | (6) |
if_rm(true,n,add(m,x)) | → | rm(n,x) | (7) |
if_rm(false,n,add(m,x)) | → | add(m,rm(n,x)) | (8) |
purge(nil) | → | nil | (9) |
purge(add(n,x)) | → | add(n,purge(rm(n,x))) | (10) |
Commutative symbols: eq
The following set of (strict) dependency pairs is constructed for the TRS.
rm#(n,add(m,x)) | → | eq#(n,m) | (13) |
purge#(add(n,x)) | → | rm#(n,x) | (14) |
if_rm#(false,n,add(m,x)) | → | rm#(n,x) | (15) |
purge#(add(n,x)) | → | purge#(rm(n,x)) | (16) |
rm#(n,add(m,x)) | → | if_rm#(eq(n,m),n,add(m,x)) | (17) |
eq#(s(x),s(y)) | → | eq#(x,y) | (18) |
if_rm#(true,n,add(m,x)) | → | rm#(n,x) | (19) |
The dependency pairs are split into 3 components.
purge#(add(n,x)) | → | purge#(rm(n,x)) | (16) |
[if_rm(x1, x2, x3)] | = | x1 + x2 + x3 + 20652 |
[s(x1)] | = | 1 |
[if_rm#(x1, x2, x3)] | = | 0 |
[purge#(x1)] | = | x1 + 0 |
[eq(x1, x2)] | = | 1 |
[false] | = | 1 |
[true] | = | 1 |
[purge(x1)] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[0] | = | 1 |
[nil] | = | 10803 |
[add(x1, x2)] | = | x1 + x2 + 20654 |
[rm(x1, x2)] | = | x1 + x2 + 20653 |
[rm#(x1, x2)] | = | 0 |
eq(s(x),s(y)) | → | eq(x,y) | (4) |
if_rm(false,n,add(m,x)) | → | add(m,rm(n,x)) | (8) |
eq(0,0) | → | true | (1) |
eq(s(x),0) | → | false | (3) |
rm(n,nil) | → | nil | (5) |
if_rm(true,n,add(m,x)) | → | rm(n,x) | (7) |
eq(x,y) | → | eq(y,x) | (11) |
rm(n,add(m,x)) | → | if_rm(eq(n,m),n,add(m,x)) | (6) |
eq(0,s(x)) | → | false | (2) |
purge#(add(n,x)) | → | purge#(rm(n,x)) | (16) |
The dependency pairs are split into 0 components.
if_rm#(true,n,add(m,x)) | → | rm#(n,x) | (19) |
rm#(n,add(m,x)) | → | if_rm#(eq(n,m),n,add(m,x)) | (17) |
if_rm#(false,n,add(m,x)) | → | rm#(n,x) | (15) |
[if_rm(x1, x2, x3)] | = | x1 + x2 + x3 + 20652 |
[s(x1)] | = | 1 |
[if_rm#(x1, x2, x3)] | = | x1 + x2 + x3 + 0 |
[purge#(x1)] | = | x1 + 0 |
[eq(x1, x2)] | = | 1 |
[false] | = | 1 |
[true] | = | 1 |
[purge(x1)] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[0] | = | 1 |
[nil] | = | 33954 |
[add(x1, x2)] | = | x2 + 3 |
[rm(x1, x2)] | = | x1 + x2 + 20653 |
[rm#(x1, x2)] | = | x1 + x2 + 3 |
eq(s(x),s(y)) | → | eq(x,y) | (4) |
if_rm(false,n,add(m,x)) | → | add(m,rm(n,x)) | (8) |
eq(0,0) | → | true | (1) |
eq(s(x),0) | → | false | (3) |
rm(n,nil) | → | nil | (5) |
if_rm(true,n,add(m,x)) | → | rm(n,x) | (7) |
eq(x,y) | → | eq(y,x) | (11) |
rm(n,add(m,x)) | → | if_rm(eq(n,m),n,add(m,x)) | (6) |
eq(0,s(x)) | → | false | (2) |
if_rm#(false,n,add(m,x)) | → | rm#(n,x) | (15) |
rm#(n,add(m,x)) | → | if_rm#(eq(n,m),n,add(m,x)) | (17) |
if_rm#(true,n,add(m,x)) | → | rm#(n,x) | (19) |
The dependency pairs are split into 0 components.
eq#(s(x),s(y)) | → | eq#(x,y) | (18) |
eq#(x,y) | → | eq#(y,x) | (12) |
[if_rm(x1, x2, x3)] | = | x1 + x2 + x3 + 20652 |
[s(x1)] | = | x1 + 1 |
[if_rm#(x1, x2, x3)] | = | x1 + 0 |
[purge#(x1)] | = | x1 + 0 |
[eq(x1, x2)] | = | 1 |
[false] | = | 1 |
[true] | = | 1 |
[purge(x1)] | = | 0 |
[eq#(x1, x2)] | = | x1 + x2 + 0 |
[0] | = | 1 |
[nil] | = | 33954 |
[add(x1, x2)] | = | x2 + 3 |
[rm(x1, x2)] | = | x1 + x2 + 20653 |
[rm#(x1, x2)] | = | 3 |
eq(s(x),s(y)) | → | eq(x,y) | (4) |
if_rm(false,n,add(m,x)) | → | add(m,rm(n,x)) | (8) |
eq(0,0) | → | true | (1) |
eq(s(x),0) | → | false | (3) |
rm(n,nil) | → | nil | (5) |
if_rm(true,n,add(m,x)) | → | rm(n,x) | (7) |
eq(x,y) | → | eq(y,x) | (11) |
rm(n,add(m,x)) | → | if_rm(eq(n,m),n,add(m,x)) | (6) |
eq(0,s(x)) | → | false | (2) |
eq#(s(x),s(y)) | → | eq#(x,y) | (18) |
The dependency pairs are split into 1 component.
eq#(x,y) | → | eq#(y,x) | (12) |