Certification Problem

Input (TPDB TRS_Equational/Mixed_C/AC46)

The rewrite relation of the following equational TRS is considered.

eq(0,0) true (1)
eq(0,s(x)) false (2)
eq(s(x),0) false (3)
eq(s(x),s(y)) eq(x,y) (4)
le(0,y) true (5)
le(s(x),0) false (6)
le(s(x),s(y)) le(x,y) (7)
app(nil,y) y (8)
app(add(n,x),y) add(n,app(x,y)) (9)
min(add(n,nil)) n (10)
min(add(n,add(m,x))) if_min(le(n,m),add(n,add(m,x))) (11)
if_min(true,add(n,add(m,x))) min(add(n,x)) (12)
if_min(false,add(n,add(m,x))) min(add(m,x)) (13)
rm(n,nil) nil (14)
rm(n,add(m,x)) if_rm(eq(n,m),n,add(m,x)) (15)
if_rm(true,n,add(m,x)) rm(n,x) (16)
if_rm(false,n,add(m,x)) add(m,rm(n,x)) (17)
minsort(nil,nil) nil (18)
minsort(add(n,x),y) if_minsort(eq(n,min(add(n,x))),add(n,x),y) (19)
if_minsort(true,add(n,x),y) add(n,minsort(app(rm(n,x),y),nil)) (20)
if_minsort(false,add(n,x),y) minsort(x,add(n,y)) (21)

Commutative symbols: eq

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by NaTT @ termCOMP 2023)

1 AC Dependency Pair Transformation