Certification Problem

Input (TPDB TRS_Innermost/Applicative_AG01_innermost/#4.5)

The rewrite relation of the following TRS is considered.

app(f,0) app(f,0) (1)
0 1 (2)
app(app(map,fun),nil) nil (3)
app(app(map,fun),app(app(cons,x),xs)) app(app(cons,app(fun,x)),app(app(map,fun),xs)) (4)
app(app(filter,fun),nil) nil (5)
app(app(filter,fun),app(app(cons,x),xs)) app(app(app(app(filter2,app(fun,x)),fun),x),xs) (6)
app(app(app(app(filter2,true),fun),x),xs) app(app(cons,x),app(app(filter,fun),xs)) (7)
app(app(app(app(filter2,false),fun),x),xs) app(app(filter,fun),xs) (8)
The evaluation strategy is innermost.

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
app#(f,0) app#(f,0) (9)
app#(app(map,fun),app(app(cons,x),xs)) app#(app(cons,app(fun,x)),app(app(map,fun),xs)) (10)
app#(app(map,fun),app(app(cons,x),xs)) app#(cons,app(fun,x)) (11)
app#(app(map,fun),app(app(cons,x),xs)) app#(fun,x) (12)
app#(app(map,fun),app(app(cons,x),xs)) app#(app(map,fun),xs) (13)
app#(app(filter,fun),app(app(cons,x),xs)) app#(app(app(app(filter2,app(fun,x)),fun),x),xs) (14)
app#(app(filter,fun),app(app(cons,x),xs)) app#(app(app(filter2,app(fun,x)),fun),x) (15)
app#(app(filter,fun),app(app(cons,x),xs)) app#(app(filter2,app(fun,x)),fun) (16)
app#(app(filter,fun),app(app(cons,x),xs)) app#(filter2,app(fun,x)) (17)
app#(app(filter,fun),app(app(cons,x),xs)) app#(fun,x) (18)
app#(app(app(app(filter2,true),fun),x),xs) app#(app(cons,x),app(app(filter,fun),xs)) (19)
app#(app(app(app(filter2,true),fun),x),xs) app#(cons,x) (20)
app#(app(app(app(filter2,true),fun),x),xs) app#(app(filter,fun),xs) (21)
app#(app(app(app(filter2,true),fun),x),xs) app#(filter,fun) (22)
app#(app(app(app(filter2,false),fun),x),xs) app#(app(filter,fun),xs) (23)
app#(app(app(app(filter2,false),fun),x),xs) app#(filter,fun) (24)

1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.