The relative rewrite relation R/S is considered where R is the following TRS
min(x,0) | → | 0 | (1) |
min(0,y) | → | 0 | (2) |
min(s(x),s(y)) | → | s(min(x,y)) | (3) |
max(x,0) | → | x | (4) |
max(0,y) | → | y | (5) |
max(s(x),s(y)) | → | s(max(x,y)) | (6) |
-(x,0) | → | x | (7) |
-(s(x),s(y)) | → | -(x,y) | (8) |
gcd(nil) | → | 0 | (9) |
gcd(cons(x,nil)) | → | x | (10) |
gcd(cons(0,y)) | → | gcd(y) | (11) |
gcd(cons(x,cons(y,z))) | → | gcd(cons(-(x,y),cons(y,z))) | (12) |
and S is the following TRS.
gcd(cons(x,cons(y,z))) | → | gcd(cons(max(x,y),cons(min(x,y),z))) | (13) |
t0 | = | gcd(cons(x,cons(y,z))) |
→R | gcd(cons(-(x,y),cons(y,z))) | |
= | t1 |