Certification Problem

Input (TPDB TRS_Standard/AG01/#3.37)

The rewrite relation of the following TRS is considered.

not(true) false (1)
not(false) true (2)
evenodd(x,0) not(evenodd(x,s(0))) (3)
evenodd(0,s(0)) false (4)
evenodd(s(x),s(0)) evenodd(x,0) (5)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Rule Removal

Using the
prec(true) = 0 stat(true) = lex
prec(false) = 0 stat(false) = lex
prec(evenodd) = 1 stat(evenodd) = lex
prec(0) = 0 stat(0) = lex

π(not) = 1
π(true) = []
π(false) = []
π(evenodd) = [1,2]
π(0) = []
π(s) = 1

all of the following rules can be deleted.
evenodd(0,s(0)) false (4)

1.1 Switch to Innermost Termination

The TRS is overlay and locally confluent:

10

Hence, it suffices to show innermost termination in the following.

1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
evenodd#(x,0) not#(evenodd(x,s(0))) (6)
evenodd#(x,0) evenodd#(x,s(0)) (7)
evenodd#(s(x),s(0)) evenodd#(x,0) (8)

1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.