The rewrite relation of the following TRS is considered.
Hence, it suffices to show innermost termination in the following.
The dependency pairs are split into 4
components.
-
The
1st
component contains the
pair
log#(s(s(x))) |
→ |
log#(s(quot(x,s(s(0))))) |
(18) |
1.1.1.1 Usable Rules Processor
We restrict the rewrite rules to the following usable rules of the DP problem.
quot(0,s(y)) |
→ |
0 |
(8) |
quot(s(x),s(y)) |
→ |
s(quot(minus(x,y),s(y))) |
(9) |
minus(0,y) |
→ |
0 |
(4) |
minus(s(x),y) |
→ |
if_minus(le(s(x),y),s(x),y) |
(5) |
le(s(x),0) |
→ |
false |
(2) |
le(s(x),s(y)) |
→ |
le(x,y) |
(3) |
if_minus(true,s(x),y) |
→ |
0 |
(6) |
if_minus(false,s(x),y) |
→ |
s(minus(x,y)) |
(7) |
le(0,y) |
→ |
true |
(1) |
1.1.1.1.1 Innermost Lhss Removal Processor
We restrict the innermost strategy to the following left hand sides.
le(0,x0) |
le(s(x0),0) |
le(s(x0),s(x1)) |
minus(0,x0) |
minus(s(x0),x1) |
if_minus(true,s(x0),x1) |
if_minus(false,s(x0),x1) |
quot(0,s(x0)) |
quot(s(x0),s(x1)) |
1.1.1.1.1.1 Reduction Pair Processor with Usable Rules
Using the
prec(log#) |
= |
1 |
|
stat(log#) |
= |
lex
|
prec(s) |
= |
1 |
|
stat(s) |
= |
lex
|
prec(0) |
= |
0 |
|
stat(0) |
= |
lex
|
prec(le) |
= |
1 |
|
stat(le) |
= |
lex
|
prec(false) |
= |
2 |
|
stat(false) |
= |
lex
|
prec(true) |
= |
3 |
|
stat(true) |
= |
lex
|
π(log#) |
= |
[1] |
π(s) |
= |
[1] |
π(quot) |
= |
1 |
π(0) |
= |
[] |
π(minus) |
= |
1 |
π(if_minus) |
= |
2 |
π(le) |
= |
[] |
π(false) |
= |
[] |
π(true) |
= |
[] |
together with the usable
rules
quot(0,s(y)) |
→ |
0 |
(8) |
quot(s(x),s(y)) |
→ |
s(quot(minus(x,y),s(y))) |
(9) |
minus(0,y) |
→ |
0 |
(4) |
minus(s(x),y) |
→ |
if_minus(le(s(x),y),s(x),y) |
(5) |
if_minus(true,s(x),y) |
→ |
0 |
(6) |
if_minus(false,s(x),y) |
→ |
s(minus(x,y)) |
(7) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pair
log#(s(s(x))) |
→ |
log#(s(quot(x,s(s(0))))) |
(18) |
could be deleted.
1.1.1.1.1.1.1 P is empty
There are no pairs anymore.
-
The
2nd
component contains the
pair
quot#(s(x),s(y)) |
→ |
quot#(minus(x,y),s(y)) |
(16) |
1.1.1.2 Usable Rules Processor
We restrict the rewrite rules to the following usable rules of the DP problem.
minus(0,y) |
→ |
0 |
(4) |
minus(s(x),y) |
→ |
if_minus(le(s(x),y),s(x),y) |
(5) |
le(s(x),0) |
→ |
false |
(2) |
le(s(x),s(y)) |
→ |
le(x,y) |
(3) |
if_minus(true,s(x),y) |
→ |
0 |
(6) |
if_minus(false,s(x),y) |
→ |
s(minus(x,y)) |
(7) |
le(0,y) |
→ |
true |
(1) |
1.1.1.2.1 Innermost Lhss Removal Processor
We restrict the innermost strategy to the following left hand sides.
le(0,x0) |
le(s(x0),0) |
le(s(x0),s(x1)) |
minus(0,x0) |
minus(s(x0),x1) |
if_minus(true,s(x0),x1) |
if_minus(false,s(x0),x1) |
1.1.1.2.1.1 Reduction Pair Processor with Usable Rules
Using the
prec(quot#) |
= |
0 |
|
stat(quot#) |
= |
lex
|
prec(s) |
= |
1 |
|
stat(s) |
= |
lex
|
prec(0) |
= |
1 |
|
stat(0) |
= |
lex
|
prec(le) |
= |
4 |
|
stat(le) |
= |
lex
|
prec(false) |
= |
2 |
|
stat(false) |
= |
lex
|
prec(true) |
= |
3 |
|
stat(true) |
= |
lex
|
π(quot#) |
= |
[1] |
π(s) |
= |
[1] |
π(minus) |
= |
1 |
π(0) |
= |
[] |
π(if_minus) |
= |
2 |
π(le) |
= |
[] |
π(false) |
= |
[] |
π(true) |
= |
[] |
together with the usable
rules
minus(0,y) |
→ |
0 |
(4) |
minus(s(x),y) |
→ |
if_minus(le(s(x),y),s(x),y) |
(5) |
if_minus(true,s(x),y) |
→ |
0 |
(6) |
if_minus(false,s(x),y) |
→ |
s(minus(x,y)) |
(7) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pair
quot#(s(x),s(y)) |
→ |
quot#(minus(x,y),s(y)) |
(16) |
could be deleted.
1.1.1.2.1.1.1 P is empty
There are no pairs anymore.
-
The
3rd
component contains the
pair
minus#(s(x),y) |
→ |
if_minus#(le(s(x),y),s(x),y) |
(13) |
if_minus#(false,s(x),y) |
→ |
minus#(x,y) |
(15) |
1.1.1.3 Usable Rules Processor
We restrict the rewrite rules to the following usable rules of the DP problem.
le(s(x),0) |
→ |
false |
(2) |
le(s(x),s(y)) |
→ |
le(x,y) |
(3) |
le(0,y) |
→ |
true |
(1) |
1.1.1.3.1 Innermost Lhss Removal Processor
We restrict the innermost strategy to the following left hand sides.
le(0,x0) |
le(s(x0),0) |
le(s(x0),s(x1)) |
1.1.1.3.1.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
if_minus#(false,s(x),y) |
→ |
minus#(x,y) |
(15) |
|
2 |
> |
1 |
3 |
≥ |
2 |
minus#(s(x),y) |
→ |
if_minus#(le(s(x),y),s(x),y) |
(13) |
|
1 |
≥ |
2 |
2 |
≥ |
3 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
4th
component contains the
pair
le#(s(x),s(y)) |
→ |
le#(x,y) |
(12) |
1.1.1.4 Usable Rules Processor
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
1.1.1.4.1 Innermost Lhss Removal Processor
We restrict the innermost strategy to the following left hand sides.
There are no lhss.
1.1.1.4.1.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
le#(s(x),s(y)) |
→ |
le#(x,y) |
(12) |
|
1 |
> |
1 |
2 |
> |
2 |
As there is no critical graph in the transitive closure, there are no infinite chains.