The rewrite relation of the following TRS is considered.
f(s(s(s(s(s(s(s(s(x)))))))),y,y) | → | f(id(s(s(s(s(s(s(s(s(x))))))))),y,y) | (1) |
id(s(x)) | → | s(id(x)) | (2) |
id(0) | → | 0 | (3) |
f(s(s(s(s(s(s(s(s(x0)))))))),x1,x1) |
id(s(x0)) |
id(0) |
f#(s(s(s(s(s(s(s(s(x)))))))),y,y) | → | f#(id(s(s(s(s(s(s(s(s(x))))))))),y,y) | (4) |
f#(s(s(s(s(s(s(s(s(x)))))))),y,y) | → | id#(s(s(s(s(s(s(s(s(x))))))))) | (5) |
id#(s(x)) | → | id#(x) | (6) |
f#(s(s(s(s(s(s(s(s(x)))))))),y,y) | → | id#(s(s(s(s(s(s(s(s(x))))))))) | (5) |
id#(s(x)) | → | id#(x) | (6) |
f(s(s(s(s(s(s(s(s(x)))))))),y,y) | → | f(id(s(s(s(s(s(s(s(s(x))))))))),y,y) | (1) |
We restrict the innermost strategy to the following left hand sides.
id(s(x0)) |
id(0) |
→ |
→ |
→ |
→ |
→ |
→ |
→ |
→ |
t0 | = | f#(s(s(s(s(s(s(s(s(x)))))))),y,y) |
→P | f#(s(s(s(s(s(s(s(s(id(x))))))))),y,y) | |
= | t1 |