The rewrite relation of the following TRS is considered.
app(app(map,f),nil) | → | nil | (1) |
app(app(map,f),app(app(cons,x),xs)) | → | app(app(cons,app(f,x)),app(app(map,f),xs)) | (2) |
app(flatten,app(app(node,x),xs)) | → | app(app(cons,x),app(concat,app(app(map,flatten),xs))) | (3) |
app(concat,nil) | → | nil | (4) |
app(concat,app(app(cons,x),xs)) | → | app(app(append,x),app(concat,xs)) | (5) |
app(app(append,nil),xs) | → | xs | (6) |
app(app(append,app(app(cons,x),xs)),ys) | → | app(app(cons,x),app(app(append,xs),ys)) | (7) |
We uncurry the binary symbol app in combination with the following symbol map which also determines the applicative arities of these symbols.
map | is mapped to | map, | map1(x1), | map2(x1, x2) |
nil | is mapped to | nil | ||
cons | is mapped to | cons, | cons1(x1), | cons2(x1, x2) |
flatten | is mapped to | flatten, | flatten1(x1) | |
node | is mapped to | node, | node1(x1), | node2(x1, x2) |
concat | is mapped to | concat, | concat1(x1) | |
append | is mapped to | append, | append1(x1), | append2(x1, x2) |
map2(f,nil) | → | nil | (18) |
map2(f,cons2(x,xs)) | → | cons2(app(f,x),map2(f,xs)) | (19) |
flatten1(node2(x,xs)) | → | cons2(x,concat1(map2(flatten,xs))) | (20) |
concat1(nil) | → | nil | (21) |
concat1(cons2(x,xs)) | → | append2(x,concat1(xs)) | (22) |
append2(nil,xs) | → | xs | (23) |
append2(cons2(x,xs),ys) | → | cons2(x,append2(xs,ys)) | (24) |
app(map,y1) | → | map1(y1) | (8) |
app(map1(x0),y1) | → | map2(x0,y1) | (9) |
app(cons,y1) | → | cons1(y1) | (10) |
app(cons1(x0),y1) | → | cons2(x0,y1) | (11) |
app(flatten,y1) | → | flatten1(y1) | (12) |
app(node,y1) | → | node1(y1) | (13) |
app(node1(x0),y1) | → | node2(x0,y1) | (14) |
app(concat,y1) | → | concat1(y1) | (15) |
app(append,y1) | → | append1(y1) | (16) |
app(append1(x0),y1) | → | append2(x0,y1) | (17) |
prec(map2) | = | 6 | stat(map2) | = | mul | |
prec(nil) | = | 0 | stat(nil) | = | mul | |
prec(cons2) | = | 1 | stat(cons2) | = | lex | |
prec(app) | = | 6 | stat(app) | = | mul | |
prec(flatten1) | = | 6 | stat(flatten1) | = | mul | |
prec(node2) | = | 3 | stat(node2) | = | mul | |
prec(flatten) | = | 2 | stat(flatten) | = | mul | |
prec(append2) | = | 1 | stat(append2) | = | lex | |
prec(map) | = | 7 | stat(map) | = | mul | |
prec(map1) | = | 4 | stat(map1) | = | lex | |
prec(cons) | = | 8 | stat(cons) | = | mul | |
prec(cons1) | = | 5 | stat(cons1) | = | lex | |
prec(node) | = | 9 | stat(node) | = | mul | |
prec(concat) | = | 10 | stat(concat) | = | mul | |
prec(append) | = | 11 | stat(append) | = | mul | |
prec(append1) | = | 1 | stat(append1) | = | mul |
π(map2) | = | [1,2] |
π(nil) | = | [] |
π(cons2) | = | [1,2] |
π(app) | = | [1,2] |
π(flatten1) | = | [1] |
π(node2) | = | [1,2] |
π(concat1) | = | 1 |
π(flatten) | = | [] |
π(append2) | = | [1,2] |
π(map) | = | [] |
π(map1) | = | [1] |
π(cons) | = | [] |
π(cons1) | = | [1] |
π(node) | = | [] |
π(node1) | = | 1 |
π(concat) | = | [] |
π(append) | = | [] |
π(append1) | = | [1] |
map2(f,nil) | → | nil | (18) |
map2(f,cons2(x,xs)) | → | cons2(app(f,x),map2(f,xs)) | (19) |
flatten1(node2(x,xs)) | → | cons2(x,concat1(map2(flatten,xs))) | (20) |
append2(nil,xs) | → | xs | (23) |
append2(cons2(x,xs),ys) | → | cons2(x,append2(xs,ys)) | (24) |
app(map,y1) | → | map1(y1) | (8) |
app(map1(x0),y1) | → | map2(x0,y1) | (9) |
app(cons,y1) | → | cons1(y1) | (10) |
app(cons1(x0),y1) | → | cons2(x0,y1) | (11) |
app(flatten,y1) | → | flatten1(y1) | (12) |
app(node,y1) | → | node1(y1) | (13) |
app(node1(x0),y1) | → | node2(x0,y1) | (14) |
app(concat,y1) | → | concat1(y1) | (15) |
app(append,y1) | → | append1(y1) | (16) |
app(append1(x0),y1) | → | append2(x0,y1) | (17) |
prec(nil) | = | 0 | weight(nil) | = | 1 | ||||
prec(concat1) | = | 3 | weight(concat1) | = | 0 | ||||
prec(cons2) | = | 1 | weight(cons2) | = | 0 | ||||
prec(append2) | = | 2 | weight(append2) | = | 0 |
concat1(nil) | → | nil | (21) |
concat1(cons2(x,xs)) | → | append2(x,concat1(xs)) | (22) |
There are no rules in the TRS. Hence, it is terminating.