The rewrite relation of the following TRS is considered.
Term_sub(Case(m,xi,n),s) | → | Frozen(m,Sum_sub(xi,s),n,s) | (1) |
Frozen(m,Sum_constant(Left),n,s) | → | Term_sub(m,s) | (2) |
Frozen(m,Sum_constant(Right),n,s) | → | Term_sub(n,s) | (3) |
Frozen(m,Sum_term_var(xi),n,s) | → | Case(Term_sub(m,s),xi,Term_sub(n,s)) | (4) |
Term_sub(Term_app(m,n),s) | → | Term_app(Term_sub(m,s),Term_sub(n,s)) | (5) |
Term_sub(Term_pair(m,n),s) | → | Term_pair(Term_sub(m,s),Term_sub(n,s)) | (6) |
Term_sub(Term_inl(m),s) | → | Term_inl(Term_sub(m,s)) | (7) |
Term_sub(Term_inr(m),s) | → | Term_inr(Term_sub(m,s)) | (8) |
Term_sub(Term_var(x),Id) | → | Term_var(x) | (9) |
Term_sub(Term_var(x),Cons_usual(y,m,s)) | → | m | (10) |
Term_sub(Term_var(x),Cons_usual(y,m,s)) | → | Term_sub(Term_var(x),s) | (11) |
Term_sub(Term_var(x),Cons_sum(xi,k,s)) | → | Term_sub(Term_var(x),s) | (12) |
Term_sub(Term_sub(m,s),t) | → | Term_sub(m,Concat(s,t)) | (13) |
Sum_sub(xi,Id) | → | Sum_term_var(xi) | (14) |
Sum_sub(xi,Cons_sum(psi,k,s)) | → | Sum_constant(k) | (15) |
Sum_sub(xi,Cons_sum(psi,k,s)) | → | Sum_sub(xi,s) | (16) |
Sum_sub(xi,Cons_usual(y,m,s)) | → | Sum_sub(xi,s) | (17) |
Concat(Concat(s,t),u) | → | Concat(s,Concat(t,u)) | (18) |
Concat(Cons_usual(x,m,s),t) | → | Cons_usual(x,Term_sub(m,t),Concat(s,t)) | (19) |
Concat(Cons_sum(xi,k,s),t) | → | Cons_sum(xi,k,Concat(s,t)) | (20) |
Concat(Id,s) | → | s | (21) |
Term_sub#(Case(m,xi,n),s) | → | Frozen#(m,Sum_sub(xi,s),n,s) | (22) |
Term_sub#(Case(m,xi,n),s) | → | Sum_sub#(xi,s) | (23) |
Frozen#(m,Sum_constant(Left),n,s) | → | Term_sub#(m,s) | (24) |
Frozen#(m,Sum_constant(Right),n,s) | → | Term_sub#(n,s) | (25) |
Frozen#(m,Sum_term_var(xi),n,s) | → | Term_sub#(m,s) | (26) |
Frozen#(m,Sum_term_var(xi),n,s) | → | Term_sub#(n,s) | (27) |
Term_sub#(Term_app(m,n),s) | → | Term_sub#(m,s) | (28) |
Term_sub#(Term_app(m,n),s) | → | Term_sub#(n,s) | (29) |
Term_sub#(Term_pair(m,n),s) | → | Term_sub#(m,s) | (30) |
Term_sub#(Term_pair(m,n),s) | → | Term_sub#(n,s) | (31) |
Term_sub#(Term_inl(m),s) | → | Term_sub#(m,s) | (32) |
Term_sub#(Term_inr(m),s) | → | Term_sub#(m,s) | (33) |
Term_sub#(Term_var(x),Cons_usual(y,m,s)) | → | Term_sub#(Term_var(x),s) | (34) |
Term_sub#(Term_var(x),Cons_sum(xi,k,s)) | → | Term_sub#(Term_var(x),s) | (35) |
Term_sub#(Term_sub(m,s),t) | → | Term_sub#(m,Concat(s,t)) | (36) |
Term_sub#(Term_sub(m,s),t) | → | Concat#(s,t) | (37) |
Sum_sub#(xi,Cons_sum(psi,k,s)) | → | Sum_sub#(xi,s) | (38) |
Sum_sub#(xi,Cons_usual(y,m,s)) | → | Sum_sub#(xi,s) | (39) |
Concat#(Concat(s,t),u) | → | Concat#(s,Concat(t,u)) | (40) |
Concat#(Concat(s,t),u) | → | Concat#(t,u) | (41) |
Concat#(Cons_usual(x,m,s),t) | → | Term_sub#(m,t) | (42) |
Concat#(Cons_usual(x,m,s),t) | → | Concat#(s,t) | (43) |
Concat#(Cons_sum(xi,k,s),t) | → | Concat#(s,t) | (44) |
The dependency pairs are split into 3 components.
Frozen#(m,Sum_constant(Left),n,s) | → | Term_sub#(m,s) | (24) |
Term_sub#(Case(m,xi,n),s) | → | Frozen#(m,Sum_sub(xi,s),n,s) | (22) |
Frozen#(m,Sum_constant(Right),n,s) | → | Term_sub#(n,s) | (25) |
Term_sub#(Term_app(m,n),s) | → | Term_sub#(m,s) | (28) |
Term_sub#(Term_app(m,n),s) | → | Term_sub#(n,s) | (29) |
Term_sub#(Term_pair(m,n),s) | → | Term_sub#(m,s) | (30) |
Term_sub#(Term_pair(m,n),s) | → | Term_sub#(n,s) | (31) |
Term_sub#(Term_inl(m),s) | → | Term_sub#(m,s) | (32) |
Term_sub#(Term_inr(m),s) | → | Term_sub#(m,s) | (33) |
Term_sub#(Term_sub(m,s),t) | → | Term_sub#(m,Concat(s,t)) | (36) |
Term_sub#(Term_sub(m,s),t) | → | Concat#(s,t) | (37) |
Concat#(Concat(s,t),u) | → | Concat#(s,Concat(t,u)) | (40) |
Concat#(Concat(s,t),u) | → | Concat#(t,u) | (41) |
Concat#(Cons_usual(x,m,s),t) | → | Term_sub#(m,t) | (42) |
Concat#(Cons_usual(x,m,s),t) | → | Concat#(s,t) | (43) |
Concat#(Cons_sum(xi,k,s),t) | → | Concat#(s,t) | (44) |
Frozen#(m,Sum_term_var(xi),n,s) | → | Term_sub#(m,s) | (26) |
Frozen#(m,Sum_term_var(xi),n,s) | → | Term_sub#(n,s) | (27) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
Term_sub#(Case(m,xi,n),s) | → | Frozen#(m,Sum_sub(xi,s),n,s) | (22) |
1 | > | 1 | |
1 | > | 3 | |
2 | ≥ | 4 | |
Term_sub#(Term_sub(m,s),t) | → | Concat#(s,t) | (37) |
1 | > | 1 | |
2 | ≥ | 2 | |
Concat#(Cons_usual(x,m,s),t) | → | Term_sub#(m,t) | (42) |
1 | > | 1 | |
2 | ≥ | 2 | |
Term_sub#(Term_app(m,n),s) | → | Term_sub#(m,s) | (28) |
1 | > | 1 | |
2 | ≥ | 2 | |
Term_sub#(Term_app(m,n),s) | → | Term_sub#(n,s) | (29) |
1 | > | 1 | |
2 | ≥ | 2 | |
Term_sub#(Term_pair(m,n),s) | → | Term_sub#(m,s) | (30) |
1 | > | 1 | |
2 | ≥ | 2 | |
Term_sub#(Term_pair(m,n),s) | → | Term_sub#(n,s) | (31) |
1 | > | 1 | |
2 | ≥ | 2 | |
Term_sub#(Term_inl(m),s) | → | Term_sub#(m,s) | (32) |
1 | > | 1 | |
2 | ≥ | 2 | |
Term_sub#(Term_inr(m),s) | → | Term_sub#(m,s) | (33) |
1 | > | 1 | |
2 | ≥ | 2 | |
Term_sub#(Term_sub(m,s),t) | → | Term_sub#(m,Concat(s,t)) | (36) |
1 | > | 1 | |
Frozen#(m,Sum_constant(Left),n,s) | → | Term_sub#(m,s) | (24) |
1 | ≥ | 1 | |
4 | ≥ | 2 | |
Frozen#(m,Sum_constant(Right),n,s) | → | Term_sub#(n,s) | (25) |
3 | ≥ | 1 | |
4 | ≥ | 2 | |
Frozen#(m,Sum_term_var(xi),n,s) | → | Term_sub#(m,s) | (26) |
1 | ≥ | 1 | |
4 | ≥ | 2 | |
Frozen#(m,Sum_term_var(xi),n,s) | → | Term_sub#(n,s) | (27) |
3 | ≥ | 1 | |
4 | ≥ | 2 | |
Concat#(Concat(s,t),u) | → | Concat#(s,Concat(t,u)) | (40) |
1 | > | 1 | |
Concat#(Concat(s,t),u) | → | Concat#(t,u) | (41) |
1 | > | 1 | |
2 | ≥ | 2 | |
Concat#(Cons_usual(x,m,s),t) | → | Concat#(s,t) | (43) |
1 | > | 1 | |
2 | ≥ | 2 | |
Concat#(Cons_sum(xi,k,s),t) | → | Concat#(s,t) | (44) |
1 | > | 1 | |
2 | ≥ | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.
Term_sub#(Term_var(x),Cons_sum(xi,k,s)) | → | Term_sub#(Term_var(x),s) | (35) |
Term_sub#(Term_var(x),Cons_usual(y,m,s)) | → | Term_sub#(Term_var(x),s) | (34) |
[Term_var(x1)] | = | 1 · x1 |
[Cons_sum(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
[Cons_usual(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
[Term_sub#(x1, x2)] | = | 1 · x1 + 1 · x2 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
Term_sub#(Term_var(x),Cons_sum(xi,k,s)) | → | Term_sub#(Term_var(x),s) | (35) |
1 | ≥ | 1 | |
2 | > | 2 | |
Term_sub#(Term_var(x),Cons_usual(y,m,s)) | → | Term_sub#(Term_var(x),s) | (34) |
1 | ≥ | 1 | |
2 | > | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.
Sum_sub#(xi,Cons_usual(y,m,s)) | → | Sum_sub#(xi,s) | (39) |
Sum_sub#(xi,Cons_sum(psi,k,s)) | → | Sum_sub#(xi,s) | (38) |
[Cons_usual(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
[Cons_sum(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
[Sum_sub#(x1, x2)] | = | 1 · x1 + 1 · x2 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
Sum_sub#(xi,Cons_usual(y,m,s)) | → | Sum_sub#(xi,s) | (39) |
1 | ≥ | 1 | |
2 | > | 2 | |
Sum_sub#(xi,Cons_sum(psi,k,s)) | → | Sum_sub#(xi,s) | (38) |
1 | ≥ | 1 | |
2 | > | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.