Certification Problem

Input (TPDB TRS_Standard/Der95/12)

The rewrite relation of the following TRS is considered.

not(not(x)) x (1)
not(or(x,y)) and(not(x),not(y)) (2)
not(and(x,y)) or(not(x),not(y)) (3)
and(x,or(y,z)) or(and(x,y),and(x,z)) (4)
and(or(y,z),x) or(and(x,y),and(x,z)) (5)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Rule Removal

Using the
prec(not) = 2 stat(not) = mul
prec(or) = 0 stat(or) = mul
prec(and) = 1 stat(and) = mul

π(not) = [1]
π(or) = [1,2]
π(and) = [1,2]

all of the following rules can be deleted.
not(not(x)) x (1)
not(or(x,y)) and(not(x),not(y)) (2)
not(and(x,y)) or(not(x),not(y)) (3)
and(x,or(y,z)) or(and(x,y),and(x,z)) (4)
and(or(y,z),x) or(and(x,y),and(x,z)) (5)

1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.