The rewrite relation of the following TRS is considered.
p(a(x0),p(b(a(x1)),x2)) | → | p(x1,p(a(b(a(x1))),x2)) | (1) |
a(b(a(x0))) | → | b(a(b(x0))) | (2) |
p#(a(x0),p(b(a(x1)),x2)) | → | p#(x1,p(a(b(a(x1))),x2)) | (3) |
p#(a(x0),p(b(a(x1)),x2)) | → | p#(a(b(a(x1))),x2) | (4) |
p#(a(x0),p(b(a(x1)),x2)) | → | a#(b(a(x1))) | (5) |
a#(b(a(x0))) | → | a#(b(x0)) | (6) |
The dependency pairs are split into 2 components.
p#(a(x0),p(b(a(x1)),x2)) | → | p#(a(b(a(x1))),x2) | (4) |
p#(a(x0),p(b(a(x1)),x2)) | → | p#(x1,p(a(b(a(x1))),x2)) | (3) |
prec(p) | = | 1 | weight(p) | = | 1 |
π(p#) | = | 2 |
π(p) | = | [2] |
p(a(x0),p(b(a(x1)),x2)) | → | p(x1,p(a(b(a(x1))),x2)) | (1) |
p#(a(x0),p(b(a(x1)),x2)) | → | p#(a(b(a(x1))),x2) | (4) |
p#(a(x0),p(b(a(a(y_0))),x2)) | → | p#(a(y_0),p(a(b(a(a(y_0)))),x2)) | (7) |
[p#(x1, x2)] | = |
|
|||||||||||||||||||||||||||||||||||||||||||||
[a(x1)] | = |
|
|||||||||||||||||||||||||||||||||||||||||||||
[p(x1, x2)] | = |
|
|||||||||||||||||||||||||||||||||||||||||||||
[b(x1)] | = |
|
p#(a(x0),p(b(a(a(y_0))),x2)) | → | p#(a(y_0),p(a(b(a(a(y_0)))),x2)) | (7) |
There are no pairs anymore.
a#(b(a(x0))) | → | a#(b(x0)) | (6) |
[b(x1)] | = | 1 · x1 |
[a(x1)] | = | 1 · x1 |
[a#(x1)] | = | 1 · x1 |
[a#(x1)] | = | 2 · x1 |
[b(x1)] | = | 2 · x1 |
[a(x1)] | = | 1 · x1 |
a#(b(a(x0))) | → | a#(b(x0)) | (6) |
There are no pairs anymore.